Статья опубликована в рамках: XXV Международной научно-практической конференции «Естественные и математические науки в современном мире» (Россия, г. Новосибирск, 03 декабря 2014 г.)
Наука: Математика
Секция: Дифференциальные уравнения, динамические системы и оптимальное управление
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
дипломов
Статья опубликована в рамках:
Выходные данные сборника:
ОБ ОДНОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДИНАМИКИ ВОЗРАСТНОЙ СТРУКТУРЫ
Кайгермазов Арслан Ахматович
канд. физ. мат. наук, доцент КБГУ, РФ, г. Нальчик
Кудаева Фатимат Хусейновна
канд. физ. мат. наук, доцент КБГУ, РФ, г. Нальчик
e -mail:
ABOUT THE MATHEMATICAL MODEL OF THE DYNAMICS OF THE AGE STRUCTURE OF THE POPULATION
Arslan Kaygermazov
candidate of physical-mathematical sciences, associated professor of Kabardin-Balkar State University named after Kh.M. Berbekov, Russia, Nalchik
Fatimat Kudaeva
candidate of physical-mathematical sciences, associated professor of Kabardin-Balkar State University named after Kh.M. Berbekov , Russia, Nalchik
АННОТАЦИЯ
В работе рассмотрены лимитированная и нелимитированная математические модели динамики численности популяции. Доказаны теоремы существования и единственности решения соответствующих нелокальных краевых задач и леммы о стационарных решениях моделей. Для частного случая построено аналитическое решение задачи. В работе использован аппарат дифференциальных и интегральных уравнений, а также теория интегральных неравенств.
ABSTRACT
The paper deals with limited and unlimited using mathematical models of population. The theorems of existence and uniqueness of solutions of nonlocal problems and lemma on the models stationary solutions. For the special case built analytical solution. Used in the apparatus of differential and integral equations and the theory of integral inequality.
Ключевые слова : популяция; возраст; возрастная структура; стационарные состояния; рождаемость; смертность; закон рождаемости; максимальный возраст; нелокальное условие; лимитирование.
Keywords : population; age structure; the stationary state; fertility; mortality; the law of fertility; the maximum age; illegal conditions; limitation.
1. Не лимитированная популяционная модель, учитывающая эффект «насыщения»
В области рассмотрим следующую задачу [1]:
Задача 1 . Найти непрерывное решение уравнения
, (1)
удовлетворяющее условиям
, (2)
. (3)
Здесь — численность популяции возраста в момент времени ; — коэффициент смертности; — коэффициент рождаемости; — максимально возможное значение численности популяции в данной экологической нише; — максимальный возраст популяции, т. е. особей старше возраста в популяции нет; — функция начального возрастного распределения.
Нелокальное условие (3) называется законом рождаемости. Кроме того, без ограничения общности, считается, что в процессе воспроизводства участвуют особи всех возрастов.
Задача (1)—(3) описывает динамику возрастной структуры нелимитрованной популяции.
Предположим, что рождаемость популяции является внешней характеристикой и не зависит от ее численности. Тогда имеем:
, (4)
где: — известная функция.
Справедливы следующие
Лемма 1. Пусть выполнены условия
1.
2.
Тогда, задача (1), (2), (4) имеет единственное, регулярное в области решение.
Лемма 2. Пусть выполнены условия
1.
2.
3. , при (5)
Тогда задача (1)-(3) имеет единственное неотрицательное стационарное состояние.
Здесь .
Теорема 1. [2] Пусть выполнены условия
a. ,
b. .
Тогда задача (1)—(3) имеет единственное непрерывное в области решение.
Отметим, что наличие условия b) гарантирует гладкость искомых решений вдоль характеристики . Если это условие нарушено, то решение задачи (1)—(3) можно искать, например, в классе интегрируемых или ограниченных функций.
Пример 1 . В области рассмотрим задачу
, (6)
, (7)
, (8)
где: — неотрицательные константы, причем .
Задача (6)—(8) имеет решение
(9)
где
Из (9) следует, что при выполнении условия решение будет непрерывным при .
2. Лимитированная за счет рождаемости популяционная модель с возрастной структурой учитывающая эффект «насыщения»
Предположим, что популяция лимитирована за счет ограничений на рождаемость. Тогда закон рождаемости будет иметь вид:
. (10)
Здесь — коэффициент рождаемости; — коэффициент лимитирующий рождаемость.
Задача 2. Найти непрерывное в области решение уравнения (1) удовлетворяющее условиям (2), (10).
Справедлива
Лемма 3. Пусть выполнены условия
1.
2.
Тогда, если то задача 2 имеет два стационарных состояния; если то задача 2 имеет одно стационарное состояние; если то задача 2 не имеет стационарных решений.
Здесь
Постоянная М удовлетворяет уравнению
Пример 2. В области рассмотрим задачу:
, (11)
, (12)
, (13)
где: a,b,c — постоянные, причем a,b,c.
Находим:
Таким образом, если параметры системы (11)—(13) удовлетворяют условию то задача (11)—(13) имеет стационарные решения (один или два). При этом для не отрицательности этих решений необходимо, чтобы корни удовлетворяли условию .
Вернемся к исследованию нелокальной задачи 2. Введем обозначения
Справедлива
Теорема 2. Пусть выполнены условия
a. ,
b.
c. оператор непрерывен по при каждом фиксированном и удовлетворяет условию Липшица с константой то есть
Тогда задача 2 имеет единственное непрерывное в области решение.
Отметим, что наличие условия b) гарантирует гладкость искомых решений вдоль характеристики . Если это условие нарушено, то решение задачи 2 можно искать, например, в классе интегрируемых или ограниченных функций.
Замечание. Если при , то решение задачи 2 будет также не отрицательным.
3. Лимитированная за счет сбора «урожая» популяционная модель с возрастной структурой учитывающая эффект «насыщения»
Пусть популяция лимитирована за счет сбора «урожая». Тогда динамика его возрастной структуры удовлетворяет уравнению
(14)
Здесь — некоторое число, — фиксированный возраст.
Уравнение (14) описывает динамику возрастной структуры лимитированной популяции. Лимитирование в данном случае осуществляется за счет слагаемого , которая характеризует величину сбора “урожая” возраста в момент времени t.
Задача 3. Найти непрерывное в области решение уравнения (1) удовлетворяющее условиям (2), (3).
Стационарные состояния задачи 3 совпадают с не отрицательными решениями задачи
(15)
(16)
Интегрируя уравнение (15) получим:
(17)
где М – произвольная константа.
Согласовав (17) с условием (16) получим:
(18)
где
Подставив (18) в (17) находим:
(19)
Считая в (19) имеем:
(20)
где
Подставив (20) в (19) получим:
(21)
Рассмотрим теперь задачу 3. Учитывая, что
имеем:
(22)
где
Учитывая (22) получим:
(23)
(24)
Таким образом, решение задачи 3 редуцировано к решению системы интегральных уравнений (23)—(24) относительно интенсивности рождения новых особей и численности популяции возраста , т. е. .
Список литературы :
1.Кайгермазов А.А., Кудаева Ф.Х. Дискретные и непрерывные модели математической биологии: учебно-методическое пособие. Нальчик: Кааб-Балк. ун-т, 2010. — 114 с.
2.Кайгермазов А.А., Сайег Т.Х. Об одной математической модели с возрастной структурой // Нелинейные проблемы дифференциальных уравнений и математической физики. Киев, 1997. — с. 130—132.
дипломов
Комментарии (1)
Оставить комментарий