Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: XLIX Международной научно-практической конференции «Личность, семья и общество: вопросы педагогики и психологии» (Россия, г. Новосибирск, 11 февраля 2015 г.)

Наука: Педагогика

Секция: Педагогическое мастерство и профессиональное саморазвитие педагога: проблемы и перспективы развития

Скачать книгу(-и): Сборник статей конференции

Библиографическое описание:
ЭСТЕТИЧЕСКОЕ ВОСПИТАНИЕ УЧАЩИХСЯ НА УРОКАХ МАТЕМАТИКИ // Личность, семья и общество: вопросы педагогики и психологии: сб. ст. по матер. XLIX междунар. науч.-практ. конф. № 2(49). – Новосибирск: СибАК, 2015.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

 

ЭСТЕТИЧЕСКОЕ  ВОСПИТАНИЕ  УЧАЩИХСЯ  НА  УРОКАХ  МАТЕМАТИКИ

Мамедяров  Даглар  Мамедярович

канд.  пед.  наук,  «Социально-педагогический  институт»,  РФ,  г.  Дербент

E-mail:  

 

STUDENTS’  AESTHETIC  EDUCATION  AT  MATHEMATICS  LESSONS

Daglar  Mamedyarov

candidate  of  Pedagogical  Sciences,  Social  Pedagogical  Institute,  Russia,  Derbent

 

АННОТАЦИЯ

Статья  посвящена  вопросу  эстетического  воспитания  на  уроках  математики.  Показаны  приемы  «конструирования»  интригующих  уравнений,  решение  которых  развивает  эстетическое  восприятие  учащихся.

ABSTRACT

The  article  is  devoted  to  the  question  of  students’  aesthetic  education  at  mathematics  lessons.  Methods  of  effective  equations  design  which  solving  develops  students’  aesthetic  perception  are  shown.

 

Ключевые  слова:  эстетическое  воспитание;  диофантовы  уравнения.

Keywords:  aesthetic  perception;  Diophantine  equations. 

 

Основоположник  русской  науки  Михаил  Ломоносов  сказал:  «Математику  уже  затем  учить  следует,  что  она  ум  в  порядок  приводит».  Решить  сложную,  оригинальную,  нестандартную  задачу  —  это  огромнейшее  интеллектуальное  наслаждение  для  любого  человека.  Оригинальные  находки,  нестандартные  подходы,  изобретательные  выходы  из  трудных  положений,  являются  мощнейшим  катализатором  интеллектуального  развития  растущего  человека.  Радость  от  достижений  в  интеллектуальной  области  —  одна  из  самых  величайших  радостей  человеческого  духа.  Математика  дает  уникальнейшую  возможность  воспитывать  смекалку,  сообразительность,  находчивость,  настойчивость,  оригинальность  решения,  она  будит  мысли  и  призывает  к  точности  и  обоснованности  рассуждений,  а  также  развивает  эстетическое  воспитание.  Под  эстетическим  воспитанием  следует  понимать  формирование  системы  знаний  и  навыков,  относящихся  ко  всем  искусствам,  всем  формам  проявления  прекрасного  в  окружающей  нас  действительности  и  приобретенных  как  в  процессе,  так  и  во  внешкольной  деятельности.  Сама  природа  математики  представляет  богатые  возможности  для  воспитания  у  учащихся  чувства  красоты  в  широком  значении  этого  слова.  Такие  свойства  математических  объектов,  как  симметрия,  свойства  правильных  многоугольников,  соотношение  размеров  фигуры,  свойства  натуральных  чисел  и  т.  п.  способны  пробудить  у  учащихся  врожденное  эстетическое  чувство;  и  дело  учителя  математики  там,  где  возможно,  обращать  на  это  внимание  учащихся  [3,  c.  34].  Не  менее  важным  в  эстетическом  отношении  являются  так  называемые  изящные  решения  какой  —  либо  задачи,  а  также  возможность  проявления  школьником  собственного  творчества  в  процессе  изучения  математики,  в  частности  в  процессе  решения  задач  [3,  c.  35].

Решение  задач  становится  доступным  почти  каждому  школьнику,  если  учитель  поощряет  усилия  учащегося  в  поисках  оригинального  или  рационального  решения  задачи  и,  если  учитель  постоянно  оценивает  найденные  учащимися  решения  с  эстетических  позиций.  Например,  учащимся  не  может  не  доставить  эстетического  удовольствия  изящное  решение  следующей  задачи:  «Найти  прямоугольник,  стороны  которого  выражаются  целыми  числами,  а  площадь  численно  равна  периметру»,  а  также  решение  следующих  уравнений  в  натуральных  числах.

1.    9.   

2.    10. 

3.    11. 

4.    12. 

5.    13.  

6.    14. 

7.      15. 

8.    16. 

  17.    18.    и  т.  д.  [1,  c.  354].

Учитель  сам  может  «сконструировать»  такие  задачи  (диофантовы  уравнения),  а  также  научить  этому  учащихся.  Приведу  несколько  примеров  «конструирования  таких  задач.

1.  Для  треугольных  чисел  выполняются  равенства

  (1)  и    (2).  Отсюда  получаем 

  (3).  Используя  определение  числа  сочетаний,  получаем:

.

Введя  новые  обозначения  ,  получаем 

.  Учащимся  предлагаем  решить  уравнение 

  (4),  в  натуральных  числах,  или  найти  четыре  натуральных  числа,  для  которых  выполняется  равенство:    [1,  c.  28].

Из  «конструкции»  этой  задачи  ясен  алгоритм  решения.  Данная  задача  имеет  бесконечное  множество  решений.

Пример.  Из  тождества  (1)  и  (2)  имеем: 

.  Используя  определение  числа  сочетаний,  получаем:

  или  .

Проверка:  .  Можно  учащимся  предлагать  для  решения  разновидности  уравнения  (4)  при  фиксированной  переменной.  Например,

 

  и  т.  д.

 

2.  Для  треугольных  чисел  выполняются  равенства

  или  .  Имеем: 

.  Введя  новые  обозначения

  получаем  уравнение  .  Ясно,  что  уравнение  имеет  бесконечное  множество  решений. 

Пример.  Пусть    тогда 

Проверка:  .

3.  Из  равенства  ,  используя  определение  числа

сочетаний,  имеем: 

 

.

 

Обозначив 

  получаем

  .  Данное  уравнение  имеет  бесконечное  множество  решений  в  натуральных  числах. 

Пример.  Пусть    тогда 

Проверка:  .

4.  Для  «конструкции»  воспользуемся  равенством 

,  где    —  разность  арифметической  прогрессии.    —  любое  натуральное  число.  Отсюда  получаем:

.  Решим  уравнение  .

Решение.  .  Тогда  .

Проверка:  .  Если  ,  тогда 

 

5.  Возьмем  три  целых  числа:    Возведем  каждое  в  куб  и  составим

выражения:    и  =.  Разделив  первое  выражение  на  второе,  получаем  .  Введя  новые  обозначения    получаем  уравнение  ,  где    —  любое  целое  число.

Пример.  Решим  уравнение 

Решение: 

Проверка:  .

6.  Возьмем  три  числа    и  составим  выражение:

  и  .  Разделим  первое  выражение  на  второе: 

Введя  обозначения    получаем  уравнение  .

Для  примера  решим  уравнение  .  Пусть  ,  получаем  уравнение  .  Имеем    Тогда 

 

Проверка:  .  Если 

Проверка:  .  Алгоритм  решения  данного  вида  уравнений  следующий:

1.  Среди  делителей  числа    находим  числа  вида  .

2.  Разделив    на  ,  находим  .

3.  Решив  уравнение  ,  находим  .

4.  Вычисляем  .

7.  Из  чисел:  составляем  два  выражения:

  и  .  Разделив  первое  выражение  на  второе,  получаем  .  Введя  новые  обозначения 

  получаем  уравнение  ,  где    —  любое  целое  число.

Из  чисел:  составляем  два  выражения:

  и  .  Разделив  первое  выражение  на  второе,  получаем.  Введя  новые  обозначения 

  получаем  уравнение  .  С  помощью  чисел    составим  выражение    .  Введя  новые  обозначения  получаем  уравнение  .

Заметим,  что  для  любых  чисел    получаем  уравнение  вида

Приведем  алгоритм  решения  уравнения  .

1.  Выясняем,  на  какие  точные  квадраты  делится  число  .

2.  Разделив    на    находим 

3.  Находим    где 

Количество  будет  зависит  от  количества  делителей    вида  .  Например,  решим  уравнение  .

Решение.  Выясняем  на  какие  точные  квадраты  делится  72.  Эти  числа  4,  9,  36.

Пусть 

Отсюда    Если  ,  тогда 

Проверка:    (решений  нет).

Если  ,  тогда 

Проверка:  .

Пусть 

Отсюда    Если 

Проверка:  .

Если  ,  то 

Проверка:  .

Пусть    Если 

Проверка:  .

Если  ,  то 

Проверка:  .

8.  Из  чисел:  составляем  выражение:

  .  Введя  новые  обозначения 

получаем  уравнение  .

Из  чисел:  составляем  выражение:

.  Отсюда  получаем   

Из  чисел:  составляем  выражение:

.  После  введения  обозначений 

получаем  уравнение  .

Таким  образом,  мы  можем  получить  уравнения,  где  в  правой  части  будут  числа  вида  ,  то  есть  мы  получаем  в  общем  виде  уравнение 

  [1.c.  82].

Приведем  алгоритм  решения  данного  вида  уравнений.

1.  Находим  все  нечетные  делители  числа 

2.  Находим  .

3.  Находим  по  формулам 

 

Для  примера,  решим  уравнение  .

Решение.  Найдем  все  нечетные  делители  35.  Это:  .

1.    тогда 

.

Проверка:  .

2.    тогда 

.

Проверка:  .

3.    тогда  .

Проверка:  .

4.    тогда 

 

Проверка:  .

5. 

 

Проверка:  .

6. 

 

Проверка:  .

9.  С  помощью  чисел    составляем  выражение 

Введя  новые  обозначения    получаем  ,  где    –  натуральное  число.

При  ,  получаем  уравнение  .

При  ,  получаем  уравнение  .

При  ,  получаем  уравнение 

Решим  уравнение  .

Решение.    тогда  .

Проверка:  .

10.  С  помощью  чисел    составим  выражение

 

Введя  новые  обозначения    получаем  уравнение 

  ,  где  .

При  ,  получаем  уравнение  .

При  ,  получаем  .

При  ,  имеем 

Решим  уравнение 

Имеем:  ,  тогда  .

Проверка:  .

«Конструирование»  и  решение  таких  задач  развивают  не  только  эстетическое  восприятие,  но  и  фантазию  и  воображение,  конечно  же  интуицию.

 

Список  литературы:

1.Балаян  Э.Н.  1001  олимпиадная  и  занимательная  задачи  по  математике.  Ростов  Н/Д.:  Феникс,  2008,  —  364  стр.

2.Мамедяров  Д.М.  Неопределенные  уравнения  и  их  системы.  Математика  для  внеклассной  работы  в  общеобразовательной  школе,  Дербент  2013  —  с.  261.

3.Оганесян  В.А.,  Колячин  Ю.М.,  Луканкин  Г.Л.,  Саннинский  В.Я.  Методика  преподавания  математики  в  школе.  Просвещение,  1980  —  с.  368.

Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий

Форма обратной связи о взаимодействии с сайтом
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.