Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: XXXVI-XXXVII Международной научно-практической конференции «Естественные и математические науки в современном мире» (Россия, г. Новосибирск, 07 декабря 2015 г.)

Наука: Информационные технологии

Секция: Математическое моделирование, численные методы и комплексы программ

Скачать книгу(-и): Сборник статей конференции

Библиографическое описание:
Костюков В.А., Кульченко А.Е., Гуренко Б.В. ПРОЦЕДУРА ИССЛЕДОВАНИЯ ПАРАМЕТРОВ МОДЕЛИ ПОДВИЖНОГО ПОДВОДНОГО ОБЪЕКТА // Естественные и математические науки в современном мире: сб. ст. по матер. XXXVI-XXXVII междунар. науч.-практ. конф. № 11-12(35). – Новосибирск: СибАК, 2015.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

 

ПРОЦЕДУРА  ИССЛЕДОВАНИЯ  ПАРАМЕТРОВ  МОДЕЛИ  ПОДВИЖНОГО  ПОДВОДНОГО  ОБЪЕКТА

Костюков  Владимир  Александрович

канд.  техн.  наук,

доцент  Южного  федерального  университета,

РФгТаганрог

E-mail: 

Кульченко  Артем  Евгеньевич

инженер 
Южного  федерального  университета,

РФгТаганрог

E-mail: 

Гуренко  Борис  Викторович

ассистент 
Южного  федерального  университета,

РФгТаганрог

E-mail: 

 

A  PARAMETRIC  IDENTIFICATION  APPROACH  OF  UV  MATHEMATICAL  MODEL

Kostukov  Vladimir

candidate  of  Technical  Science,  associate  professor 
of  Southern  Federal  University, 
Russia,  Taganrog

Kulchenko  Artem

engineer 
of  Southern  Federal  University, 
Russia,  Taganrog

Gurenko  Boris

assistant 
of  Southern  Federal  University, 
Russia,  Taganrog

 

АННОТАЦИЯ

Приводится  описание  методики  получения  параметров  модели  подводного  подвижного  объекта,  построенной  на  базе  модели  динамики  твердого  тела.  В  работе  рассмотрены:  определение  массо-инерционных  параметров,  гидродинамическое  исследование  и  приближенное  определение  сил,  порождаемых  элементами  конструкции  подводного  объекта. 

ABSTRACT

The  paper  presents  description  of  the  method  for  obtaining  parameters  of  underwater  vehiclemathematical  model,  which  is  based  on  rigid  body  dynamics.  It  discusses  the  definition  of  mass  and  inertial  parameters,  hydrodynamic  studies  and  an  approximate  determination  of  the  forces  generated  by  the  structural  elements  of  the  underwater  object.

 

Ключевые  слова:  подводный  подвижный  объект;  математическая  модель;  гидродинамика.

Keywords:  underwater  vehicle;  mathematical  model;  hydrodynamic.

 

Введение

Адекватная  математическая  модель  движения  подводного  объекта  (ПО)  необходима  для  разработки  эффективной  системы  управления  его  движением  [3;  4;  6;  8;  9].  Особое  значение  имеет  адекватность  математической  модели  при  осуществлении  указанных  движений  ПО  как  необитаемого  аппарата.  Корректное  построение  математической  модели  ПО  в  значительной  степени  определяет  качество  проектирования  системы  управления  движением  ПО,  в  первую  очередь,  адекватность  результатов  проектирования  реальным  свойствам  разрабатываемой  системы  управления  [2].

Разработка  математической  модели  ПО,  как  и  любого  другого  объекта  управления,  проводится  на  основе  соответствующих  общих  и  частных  законов  природы.  Математическая  модель  движений  подвижного  подводного  объекта  базируется  на  модели  твердого  тела.  В  работе  предлагается  процедура  определения  параметров  модели  движения  ПО,  достаточная  для  решения  практических  задач  [1;  7].  В  общем  виде  процедура  состоит  из  трех  базовых  этапов:  определения  массо-инерционных  характеристик  ПО,  определения  гидродинамических  коэффициентов  и  их  обработки,  расчета  дополнительных  сил.  Ниже  приведем  описание  каждого  из  приведенных  этапов.

Определение  массо-инерционных  характеристик  подводного  объекта.

Массо-инерционные  параметры  ПО  рассчитываются  в  приближении  равномерного  распределения  массы  по  всему  телу.  Для  этого  проводятся  соответствующие  измерения  с  помощью  программного  комплекса  cad-моделирования  SolidWorks.  С  его  помощью  определяется  геометрический  центр  –  начало  связанной  системы,  который,  как  правило,  смещен  от  оси  симметрии  корпуса  на  некоторое  расстояние.  Определение  массо-инерционных  параметров  ПО  включает  следующие  этапы:

  1. Построение  связанной  с  ПО  системы  и  задание  усредненной  плотности.
  2. Расчет  элементов  тензора  моментов  инерции  относительно  этой  системы.
  3. Расчет  присоединенных  масс. 

Расчет  гидродинамических  коэффициентов  подводного  объекта.

Расчет  гидродинамических  коэффициентов  производится  в  программном  комплексе  NumecaFINE/Hexa  [3].  Процедура  гидродинамического  расчета  с  использованием  программного  комплекса  имеет  вид:

  1. создание  расчетной  области;
  2. импортирование  созданной  геометрической  модели  в  пакет  NUMECAInternational;
  3. задание  граничных  условий  на  поверхностях  полученной  области;
  4. генерация  сетки;
  5. выбор  основных  параметров  среды;
  6. выбор  математической  модели,  описывающей  кинематику  и  динамику  сплошной  среды; 
  7. задание  начального  приближения  к  решению;
  8. задание  вычислительных  параметров  (т.  е.  величин,  которые  определяют  используемые  алгоритмы  вычислительных  процессов);
  9. задание  выходных  параметров  и  типов  их  представлений  после  вывода;
  10. запуск  модели  на  расчет  в  вычислительном  модуле  и  контроль  сходимости  процесса  расчета;
  11. просмотр  полученных  результатов  расчета  с  помощью  блока  CFView.

При  этом,  для  описания  кинематики  и  динамики  сплошной  может  быть  использована  система  уравнений  Навье-Стокса  с  учетом  турбулентности  по  Спаларт-Альмаресу.  Сеточное  разбиение  расчетной  области  произведено  с  использованием  подпрограммы  HEXPRESS. 

Обработка  результатов  гидродинамических  расчетов.  Результаты  расчетов  представлены  в  виде  двумерных  массивов  значений  компонентов  гидродинамических  сил  и  моментов,  действующих  на  подводный  объект.  Для  дальнейшего  использования  расчетных  данных  в  модели  динамики  предлагается  их  аппроксимировать  полиномами.  Такой  способ  позволяет  представить  гидродинамические  коэффициенты  в  компактной  форме. 

Точность  аппроксимации  оценивается  двумя  величинами:  суммой  квадратов  отклонений  аппроксимирующей  функции  от  базисных  значений  –  SSE  и  корнем  из  среднего  квадрата  отклонения  –  RMSE.  Приведем  описание  алгоритм  выбора  степени  аппроксимирующего  полинома  в  словестной  форме.

Согласно  данному  алгоритму,  чтобы  найти  степень  аппроксимирующего  полинома  гидродинамического  коэффициента,  на  первом  шаге  производится  аппроксимация  полиномом  2-й  степени.  Инкрементируется  i  –  степень  полинома.  Производится  аппроксимация  полиномом  i-й  степени.  Сравнивается  среднеквадратическое  отклонение  RMSE(i)  с  RMSE(i-1)  и  SSE(i)  с  SSE(i-1).  Если  погрешность  для  нового  полинома  RMSE(i)  гораздо  меньше,  чем  в  случае  полинома  (i-1)-степени,  тогда  степень  инкрементируется  с  шагом  1.  Операции  аппроксимации  и  сравнения  повторяются  до  тех  пор,  пока  разница  между  RMSE(i)  и  RMSE(i-1),  а  так  же  SSE(i)  и  SSE(i-1),  станет  незначительной.

Расчет  дополнительных  сил  и  моментов,  порождаемых  рулями  управления.  Рули  управления  ПО  порождают  силы  и  моменты,  которые  оказывают  влияние  на  общую  динамику  ПО.  Гидродинамические  силы,  индуцируемые  этими  рулями,  на  крейсерских  скоростях  движения  ПО  можно  вычислять  приближенно  с  помощью  аппроксимации  плоскими  пластинами,  повторяющими  контур  этих  рулей. 

 

Выводы

На  основе  приведенной  процедуры  в  работах  [1–3;  7]  были  получены  параметры  математической  модели  ПО.  В  процессе  выполнения  работы  использовались  методы  компьютерного  моделирования  и  численного  исследования  корпуса  ПО.  Полученные  модели  позволяют  решать  задачи  построения  полной  математической  модели  ПО  и  проблемы  управления  его  движением.

 

Благодарности

Работа  поддержана  Министерством  образования  и  науки  РФ,  высшим  учебным  заведением  в  части  проведения  НИР  в  рамках  выполнения  гос.  задания,  тема  №  213.01-11/2015*.

 

Список  литературы:

  1. Гуренко  Б.В.  Построение  и  исследование  математической  модели  автономного  необитаемого  подводного  аппарата  //  Инженерный  вестник  дона.  –  2014.  –  №  4,  [Электронный  ресурс]  –  Режим  доступа  –  URL:  http://www.ivdon.ru/ru/magazine/archive/N4y2014/2626  (дата  обращения  07.12.2015).
  2. Гуренко  Б.В.,  Федоренко  Р.В.,  Береснев  М.А.,  Сапрыкин  Р.В.,  Переверзер  В.А.  Разработка  симулятора  автономного  необитаемого  подводного  аппарата  //  Инженерный  вестник  дона.  –  2014.  –  №  3,  [Электронный  ресурс]  –  Режим  доступа  –  URL:  http://ivdon.ru/ru/magazine/archive/n3y2014/2504  (дата  обращения  07.12.2015).
  3. Костюков  В.А.,  Пшихопов  В.Х.  Применение  программного  комплекса  NUMECA  International  для  расчета  аэрогидродинамических  параметров  математических  моделей  подвижных  объектов  //  Известия  ЮФУ,  тематический  выпуск  «Актуальные  проблемы  производства  и  потребления  электроэнергии».  –  Таганрог:  Изд-во:  ТТИ  ЮФУ.  –  2008.  –  №  7.  –  С.  82–88.
  4. Пшихопов  В.Х,  Медведев  М.Ю.,  Федоренко  Р.В.,  Гуренко  Б.В.,  Чуфистов  В.М.,  Шевченко  В.А.  Алгоритмы  многосвязного  позиционно-траекторного  управления  подвижными  объектами  //  Инженерный  вестник  дона.  –  2014.  –  №  4,  [Электронный  ресурс]  –  Режим  доступа  –  URL:  http://ivdon.ru/ru/magazine/archive/N4y2014/2579  (дата  обращения  07.12.2015).
  5. Пшихопов  В.Х,  Федотов  А.А,  Медведев  М.Ю.,  Медведева  Т.Н.,  Гуренко  Б.В.  Позиционно-траекторная  система  прямого  адаптивного  управления  морскими  подвижными  объектами  //  Инженерный  вестник  дона.  –  2014.  –  №  3,  [Электронный  ресурс]  –  Режим  доступа  –  URL:  http://ivdon.ru/ru/magazine/archive/n3y2014/2496  (дата  обращения  07.12.2015).
  6. Пшихопов  В.Х.,  Медведев  М.Ю.,  Костюков  В.А.,  Гайдук  А.Р.,  Федоренко  Р.В.,  Гуренко  Б.В.,  Крухмалев  В.А.,  Медведева  Т.Н.  Проектирование  роботов  и  робототехнических  систем:  учеб.  Пособие.  Ростов-на-Дону:  Изд-во  ЮФУ,  2014.  –  195  с.
  7. Gurenko  B.,  Mathematical  Model  of  Autonomous  Underwater  Vehicle  //  Proc.  of  the  Second  Intl.  Conf.  on  Advances  In  Mechanical  and  Robotics  Engineering.  –  Zurich,  Switzerland,  2014.  –  P.  84–87.
  8. Pshikhopov  V.Kh.,  Medvedev  M.Y.,  and  Gurenko  B.V.,  Homing  and  Docking  Autopilot  Design  for  Autonomous  Underwater  Vehicle  //  Applied  Mechanics  and  Materials.  –  Zurich,  Switzerland,  2014.  –  700–707.
  9. Pshikhopov  V.,  Chernukhin  Y.,  Guzik  V.,  Medvedev  M.,  Gurenko  B.,  Piavchenko  A.,  Saprikin  R.,  Pereversev  V.,  Krukhmalev  V.,  Implementation  of  Intelligent  Control  System  for  Autonomous  Underwater  Vehicle  //  Applied  Mechanics  and  Materials.  –  Zurich,  Switzerland,  2014.  –  704–710.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий