Статья опубликована в рамках: IV Международной научно-практической конференции «Научное сообщество студентов XXI столетия. ЕСТЕСТВЕННЫЕ НАУКИ» (Россия, г. Новосибирск, 27 сентября 2012 г.)
Наука: Биология
Секция: Экология
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
отправлен участнику
ВЛИЯНИЕ АНТРОПОГЕННОЙ НАГРУЗКИ НА АЗОТФИКСИРУЮЩУЮ СПОСОБНОСТЬ ГОРОДСКИХ И ПРИГОРОДНЫХ НАСАЖДЕНИЙ
Овод Артем Артурович
Алпатова Елена Александровна
студенты 4 курса, кафедра экологии РГАУ-МСХА им. К.А. Тимирязева, г. Москва
Е-mail: belosom@rambler.ru
Мосина Людмила Владимировна
научный руководитель, д-р биол. наук, профессор РГАУ-МСХА им. К.А. Тимирязева, г. Москва
В условия постоянно ухудшающейся экологической обстановки городов, ухудшения физического и психического здоровья городского населения как никогда ранее велика значимость зеленых насаждений. Они выполняют в городской среде многообразные функции и играют огромную роль в оптимизации экологического состояния окружающей среды и поддержании на необходимом уровне жизнеобеспечения городского населения. Древесные насаждения стабилизируют нормальное течение биологического круговорота веществ, а значит, обеспечивает устойчивость биосферы и сохраняют экологические функции почв [3].
Традиционно к экологическим функциям зеленых насаждений относят их средоформирующие и среднезащитные (почвозащитные, противо-эрозионные, ветрозащитные) и санитарно-гигиенические свойства (пыле- и воздухоочищение, выделение фитонцидов и др.) [1].
Роль зеленых насаждений огромна, так как они служат «фильтром», очищающим атмосферу. Фильтрующая способность насаждений объясняется тем, что одна часть газов поглощается в процессе фотосинтеза, другая просеивается в верхних слоях атмосферы благодаря вертикальным и горизонтальным воздушным потоком. На рост и развитие зеленых насаждений огромное влияние оказывают условия азотного питания. При недостатке азота рост резко ухудшается. Азот является одним из основных биогенных элементов, обеспечивающих нормальное произрастание растений. Он входит в состав простых и сложных белков, которые являются составной частью цитоплазмы растительных клеток. Также азот входит в состав нуклеиновых кислот (ДНК, РНК), играющих исключительно важную роль в обмене веществ в организме. Основная масса азота содержится в почве в виде сложных органических соединений (94—95 %). Однако этот азот недоступен или труднодоступен растениям. Только малое количество азота (около 1 %) содержится в легкоусвояемых растениями минеральных формах (NO3-и обменного NH4+). Поэтому исключительно важным источником является биологический азот, т. е. азот, фиксированный почвенными микроорганизмами (азотофиксаторами) [2].
Почвенные микроорганизмы обладают уникальной способностью фиксировать атмосферный, газообразный азот и переводить его в усвояемые для растений соединения.
Способность микроорганизмов осуществлять этот процесс определяется состоянием растительной компоненты и, в частности, её фотосинтезирующей поверхностью.
При благоприятных условиях для роста наземных органов, в частности листовой биомассы, происходит более активный процесс ассимиляции, что увеличивает синтез органических веществ в фотосинтезирующем аппарате растений и большее их поступление по корневым системам. Следовательно, это увеличивает биологическую активность почвы, и в частности её нитрогеназную способность.
При нарушении же фотосинтезирующей поверхности растений под действием загрязняющих веществ нарушается синтез органических соединений, а значит, сокращается поступление в ризосферу продуктов ассимиляции, и снижается азотофиксирующая способность почвы. То есть процесс фотосинтеза в растениях и азотфиксация в почве является сопряжённым процессом и отражает интенсивность биохимических процессов в системе почва-растение [4].
Отмечая существенное влияние антропогенных воздействий, вызывающих нарушение деструкционных функций экосистем, нам представилась возможность выяснить, как влияет данный фактор на интенсивность обменных процессов в системе почва — растение. Результаты исследований представлены в табл. 1.
Таблица 1.
Азотфиксирующая способность почв под лесными древостоями в условиях различной антропогенной нагрузки
№ пробной площади |
Главная порода, класс возраста |
Генетический горизонт и глубина образца, см |
Содержание C2H4 н´моль/1г´час |
Участки леса в условиях естественного антропогенного воздействия |
|||
6 |
Дуб X—XII |
А1 0—10 А1 10—24 |
5,13 ±0,24 ´10-9 3,21 ±0,21 ´10-9 |
8 |
Дуб VII—VIII |
А1 0—4 А1 4—22 |
5,34 ±0,27 ´10-9 3,30 ±0,21 ´10-9 |
9 |
Сосна с берёзой |
А1 0—6 А1 6—24 |
4,84 ±0,18 ´10-9 3,28 ±0,21 ´10-9 |
Участки леса в условиях повышенного антропогенного воздействия |
|||
11 |
Дуб X—XII |
А1 0—4 А1 4—22 |
3,08 ±0,20 ´10-9 1,92 ±0,15 ´10-9 |
7 |
Дуб VII—VIII |
А1 1—6 А1 6—23 |
3,24 ±0,18 ´10-9 1,86 ±0,16 ´10-9 |
10 |
Сосна с берёзой |
А1 0—6 А1 6—21 |
3,22 ±0,24 ´10-9 1,94 ±0,16 ´10-9 |
Контрольные варианты (пригородные леса) |
|||
Краснополянское лесничество |
Дуб VIII |
А1 3—19 |
27,5 ±2,51 ´10-9
|
Истринское лесничество |
Сосна с берёзой VIII |
А1 4—19
|
34,18 ±2,92 ´10-9 36,64 ±3,1 ´10-9 |
Результаты, приведённые в таблице, показали, что под древостоями под влиянием антропогенного загрязнения азотфиксирующая способность почв снижается примерно на 30 % (с 5,13—5,34 н´молей этилена в условиях естественного антропогенного воздействия до 3,08—3,24 н´молей на участках с повышенным антропогенным загрязнением в верхнем гумусовом горизонте).
Определение данного показателя на участках, удалённых от городских магистралей показало стремительное увеличение азотфиксирующей способности до 27,5—36,64´10-9 н´молей этилена в 1 г почвы за 1 час, что примерно в 12 раз выше, чем в условиях естественного антропогенного загрязнения.
Отмечая снижение нитрогеназной активности под воздействием антропогенного загрязнения, необходимо отметить существенную роль состава и возраста лесных насаждений [5].
Так разные породы по-разному реагируют на степень «антропогенности». Наиболее чувствительными к условиям городской среды являются хвойные породы, их азотфиксирующая способность максимальна в нормальных экологических условиях (пригородные леса) — 34,18—36,64 ´10-9 н´молей C2H4. Но резко снижается в условиях городского лесного массива, несмотря на различную удаленность от города – 3,28-5,34 ´10-9 н´молей C2H4[7].
Таким образом, в насаждениях, произрастающих в условиях повышенного антропогенного воздействия и характеризующихся нарушением фотосинтетической поверхности — суховершинностью, снижением длины хвоинок, отмечается нарушение жизненно важных функций, в частности, нарушение азотного питания.
Для повышения устойчивости лесных экосистем необходимо улучшить обеспеченность древесных пород азотом. Показатель же азотофиксирующей способности почв может использоваться для оценки состояния экосистем и нормирования антропогенных нагрузок [6].
Список литературы:
- Амбарцумян В.В., Носов В.Б., Тагасов В.И. Экологическая безо-пасность автомобильного транспорта. М.: Изд-во Научтехлитиздат, 1999. — 210 с.
- Васильев Н.Г., Кузнецов Е.В., Мосина Л.В., Азот в лесных экосистемах // Изв. ТСХА. — 1996. — Вып. 6. — С. 98—106.
- Зеленый фонд — составная часть природы. Городские леса и лесопарки. Основные принципы организации / В.Л. Машинский. М.: Изд-во Спутник, 2006. — 144 с.
- Лесные экосистемы и урбанизация / Москва, 2008. — 228 с.
- Попов А.А. Экология эпохи глобализации природопользования. М.: Изд-во Весь Сергиев Посад, 2009. — 600 с.
- Состояние зелёных насаждений в Москве. (Аналитический доклад) (по данным мониторинга 2000 г.). М.: Изд-во Прима-Пресс-М, 2001. — 289 с.
- Чернобровкина Н.П. Экофизиологическая характеристика использования азота сосной обыкновенной. М.: Изд-во Букинистическое издание, 2001. — 176 с.
отправлен участнику
Комментарии (3)
Оставить комментарий