Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: Научного журнала «Студенческий» № 38(124)

Рубрика журнала: Математика

Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2, скачать журнал часть 3, скачать журнал часть 4

Библиографическое описание:
Антошкина А.Н., Варакина А.В. ЭКСПЕРИМЕНТ НА УРОКАХ ГЕОМЕТРИИ КАК СРЕДСТВО ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА У ШКОЛЬНИКОВ К ПРЕДМЕТУ // Студенческий: электрон. научн. журн. 2020. № 38(124). URL: https://sibac.info/journal/student/124/193040 (дата обращения: 14.01.2025).

ЭКСПЕРИМЕНТ НА УРОКАХ ГЕОМЕТРИИ КАК СРЕДСТВО ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА У ШКОЛЬНИКОВ К ПРЕДМЕТУ

Антошкина Анастасия Николаевна

студент, Ишимский педагогический институт им. П.П. Ершова, филиал Тюменского государственного университета,

РФ, г. Ишим

Варакина Алёна Вячеславовна

студент, Ишимский педагогический институт им. П.П. Ершова, филиал Тюменского государственного университета,

РФ, г. Ишим

EXPERIMENT IN GEOMETRY LESSONS AS A MEANS OF FORMING STUDENTS ' COGNITIVE INTEREST IN THE SUBJECT

 

Anastasia Antoshkina

a student of P.P. Ershov Ishim Teachers Training Institute (the branch) of Tyumen State University,

Russia, Ishim

Alena Varakina

a student of P.P. Ershov Ishim Teachers Training Institute (the branch) of Tyumen State University,

Russia, Ishim

 

АННОТАЦИЯ

Проведение экспериментов на уроках позволяет привлечь внимание школьников к получению новых знаний. Такая форма работы расширяет кругозор учащихся, развивает наблюдательность. Данная статья посвящена проблеме использования эксперимента на уроках геометрии.

ABSTRACT

By conducting experiments in the classroom, it becomes possible to motivate students to acquire new knowledge. They expand students ' horizons and develop observation skills. This article is devoted to the problem of using an experiment in geometry lessons.

 

Ключевые слова: геометрия, познавательный интерес, эксперимент.

Keywords: geometry, cognitive interest, experiment.

 

Нередко от учащихся школ можно услышать фразу писателя Альбера Камю: «Школа готовит нас к жизни в мире, которого не существует». Причина, которая заставляет так высказываться, на самом деле проста. Как показывает практика, школьники ощущают серьёзное затруднение в применении полученных знаний в реальной жизни. Тогда актуальным становится вопрос о поиске таких методических средств, которые бы способствовали развитию самостоятельной познавательной деятельности на основе методов обучения, ставящих, в свою очередь, ученика в субъективную позицию. На наш взгляд, таким средством является эксперимент.

Известный педагог Владимир Ильич Загвязинский считает, что эксперимент является точным методом изучения различных явлений, наблюдения за изучаемым объектом. Он представляет собой контролируемое и целенаправленное действие исследователя на объект для изучения его различный свойств, отношений и связей [1, с. 23].

Советский математик В.В. Налимов выделяет 3 этапа, из которых состоит эксперимент:

1. Подготовительный этап (ориентирован на планирование эксперимента, на его теоретическое обоснование, создание модели исследования, формулировку гипотезы.

2. Этап сбора экспериментальных данных (направлен на работу с моделью, выполнение соответствующих технологических действий);

3. Этап обработки результатов (представляет собой анализ полученных результатов, сопоставление их с выдвинутой гипотезой) [2, с. 55].

По мнению многих методистов, математические исследования редко практикуются в работе учителей. На их взгляд, это грубая ошибка, поскольку проведённый эксперимент на уроках математики позволяет не только достигать целей развивающего обучения, но и будут способствовать развитию интереса к предмету [3, с. 51].

Геометрия является одним из тех разделов математики, в котором большинство утверждений достаточно легко подтверждаются экспериментальным путём. Особое место на уроках геометрии отводится наглядности.

Как правило, при изучении геометрии можно пользоваться материальными моделями и компьютерными.  Использование эксперимента в процессе преподавания дисциплины позволяет решить различные математические ситуации. Этому будет способствовать установление различных связей (внутрипредметных, межпредметных, причинно-следственных) в ходе проведённого исследования.

На уроках геометрии можно выделить 2 вида эксперимента:

1. Эксперимент, проводимый в рамках изучаемого предмета;

2. Межпредметный эксперимент.

Как показывает практика, достаточно трудной задачей является организация межпредметного эксперимента, поэтому большая часть учителей используют методики по организации небольших экспериментов на конкретном этапе проведения урока. Они не сложно организуются на занятиях, где предстоит изучение новой темы, и оказывают значительное влияние на продуктивность работы школьников, заинтересовывают школьника в изучении данной дисциплины. В таких экспериментах выделяют следующие этапы организации:

1. Изображение геометрического объекта в различных положениях размерах;

2. Наблюдения за фигурами и действия с ними;

3. Описание свойств фигур;

4. Выдвижение гипотезы;

5. Доказательство выдвинутых геометрических фактов.

Правильно подобранный эксперимент будет мотивировать учащихся к изучению геометрии.

Таким образом, отметим, что процесс формирования познавательного интереса к изучаемому предмету имеет огромное значение. Использовании эксперимента на уроках геометрии способствует развитию наблюдательности, создает положительный эмоциональный фон, обеспечивает понимание различных закономерностей, и самое главное, повышает интерес к её изучению.

 

Список литературы:

  1. Загвязинский В.И. Методология и методы психолого-педагогического исследования: учеб.пособие для студентов пед. вузов. – М.: Академия, 2001. – 202 с.
  2. Налимов В.В. Теория эксперимента. – М.: Наука, 1971. – 215 с.
  3. Шакирова Л.Р., Фалиеева М.В. Эксперимент на уроках геометрии как средство формирования интереса к её изучению // Математическое образование в школе и вузе: теория и практика (MATHEDU - 2017): Материалы Международного форума по математическому образованию, посвященного 225-летию Н.И. Лобачевского (Казань, 18-22 октября 2017 г.). – с. 180-185.

Оставить комментарий