Телефон: +7 (383)-312-14-32

Статья опубликована в рамках: XVI Международной научно-практической конференции «Инновации в науке» (Россия, г. Новосибирск, 28 января 2013 г.)

Наука: Математика

Скачать книгу(-и): Сборник статей конференции, Сборник статей конференции часть II

Библиографическое описание:
Прохоров А.В. МОДЕЛИРОВАНИЕ ДВИЖУЩИХСЯ ПРИПОВЕРХНОСТНЫХ ИСТОЧНИКОВ ТЕПЛА // Инновации в науке: сб. ст. по матер. XVI междунар. науч.-практ. конф. Часть I. – Новосибирск: СибАК, 2013.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов
Статья опубликована в рамках:
 
 
Выходные данные сборника:

 

 

МОДЕЛИРОВАНИЕ  ДВИЖУЩИХСЯ  ПРИПОВЕРХНОСТНЫХ ИСТОЧНИКОВ  ТЕПЛА

Прохоров  Александр  Владимирович

канд.  техн.  наук,  филиал  федерального  государственного  бюджетного  образовательного  учреждения  высшего  профессионального  образования  «Южно-Уральский  государственный  университет»  (национальный  исследовательский  университет)  в  г.  Озерске,  г.  Озерск

E-mail:  Prokhorov@bk.ru 

 

MODELLING  OF  MOVING  SURFACE HEAT  SOURCES 

Prokhorov  Alexander

candidate  of  technical  Sciences,  Branch  of  Federal  State  State-Financed  Educational  Institution  of  Higher  Professional  Education  «South  Ural  State  University»  (national  research  university)  in  Ozersk,  Ozersk 

 

АННОТАЦИЯ

В  статье  рассматриваются  вопросы  моделирования  движущихся  источников  теплоты  при  нагреве  твердых  тел.  Проведена  классифи­кация  источников  тепла.

ABSTRACT

The  article  deals  with  the  modeling  of  heat  moving  sources  at  heating  solids.  It  gives  classification  of  heat  sources.

 

Ключевые  слова:  моделирование;  теплопроводность;  твердое  тело;  источник  теплоты.

Keywords:  modeling;  thermal  conductivity;  a  solid;  a  heat  source.

 

Изучение  температурных  полей  в  твердых  телах  является  важной  задачей  теплофизики  и  моделирования,  так  как  превышение  допустимых  температурных  пределов  может  привести  к  разрушению  материала  и  нарушению  его  физико-механических  свойств.

Традиционно  при  моделировании  источников  теплоты,  различаю­щихся  между  собой  по  распределенности,  времени  действия  и  движению  относительно  изделия  используются  численный  и  анали­тический  подходы.  Рассмотрим  некоторые  способы  моделирования  источников  теплоты  [1,  9].

При  составлении  соотношений,  описывающих  процесс  распрос­транения  тепла  от  движущихся  источников,  используется  принцип  суперпозиции.  Весь  период  действия  источника  тепла  разбивается  на  предельно  малые  временные  отрезки.  Действие  отдельного  источника  тепла  представляют  как  действие  мгновенного  источника.  Суммируя  процессы  распространения  тепла  от  действующих  друг  за  другом  в  разных  местах  тела  мгновенных  источников  теплоты,  получают  уравнение  температурного  поля  при  непрерывном  действии  движущегося  источника.  Такой  подход  при  моделировании  применен,  например,  в  работе  [2].

Точечный  источник  на  поверхности  полубесконечного  тела

Точечный  источник  тепла  постоянной  мощности    движется  со  скоростью    прямолинейно  в  направлении  оси  .  Предположим,  что  с  момента  начала  движения  источника  прошло  время  .  Изменение  температуры  в  заданной  точке  в  режиме  теплонасыщения  определяется  выражением

 

,

где:  .

 

После  долговременного  воздействия  источника  тепла  достигается  предельное  состояние,  в  котором  температура  точек  в  стационарной  системе  координат  стабилизируется  и  перестает  изменяться.  Это  состояние  достигается  при  стремлении  времени  к  бесконечности  и  называется  квазистационарным.

В  этом  случае  уравнение  для  расчета  температуры  принимает  вид

 

.

 

Линейный  источник  в  бесконечной  пластине

Линейный  источник  тепла  мощностью    с  равномерным  распределением  ее  по  толщине  пластины  движется  с  неизменной  скоростью 

Уравнение,  описывающее  изменение  температурных  полей  в  пластине,  получается  так  же,  как  в  случае  точечного  источника  теплоты.  Приращение  температуры  в  точке    от  мгновенного  линейного  источника  теплоты,  составит

 

,

где:  .

 

Это  уравнение  отражает  приращение  температур  в  пластине  в  режиме  теплонасыщения.  Предельное  квазистационарное  состояние  также  достигается  при  стремлении  времени  к  бесконечности.  В  этом  случае  уравнение  для  расчета  температурных  полей  принимает  вид

 

.

 

При  нагреве  пластины  линейным  источником  тепла  распреде­ление  температуры  по  ее  толщине  равномерно.  Следует  иметь  в  виду,  что  в  из-за  наличия  теплоотдачи  с  поверхности  пластины  всегда  наблюдается  неизотропность  распределения  температуры  по  толщине  изделия.  Эта  неравномерность  будет  тем  значительнее,  чем  больше  подкоренное  выражение.  Кроме  того,  следует  отметить,  что  при  расчете  итотерм  с  учетом  теплоотдачи  коэффициент  теплоотдачи    прини­мается  изотермическим  и  имеет некоторое медианное значение.

 

Плоский  источник  в  бесконечном  стержне

Рассмотрим  плоский  источник  теплоты  постоянной  мощности  ,  равномерно  распределенный  по  поперечному  сечению  стержня  и  перемещающийся  с  постоянной  скоростью    в  направлении  продольной  оси  стержня.  внешняя  поверхность  отдает  теплоту  в  окружающую  среду  при  постоянном  коэффициенте  теплоотдачи  .

Суммируя  приращения  температуры  от  всех  мгновенных  источников  теплоты  в  пределах  от  0  до  ,  получим

 

.

 

Предельное  квазистационарное  состояние,  как  и  в  предыдущих  случаях,  достигается  при  стремлении  времени  к  бесконечности.  В  этом  случае  уравнение  для  расчета  температурных  полей  принимает  вид

 

,

где:  .

 

Распределение  температуры  вдоль  оси  стержня  будет  характе­ризоваться  быстрым  нарастанием  температуры  впереди  источника  теплоты  и  плавным  спадом  температуры  позади  источника. 

Альтернативой рассмотренному мгновенному точечному источнику теплоты и его производным являются внутренние источники тепла [3—8]. Моделирование  внешнего  воздействия  в  этом  случае  сводится  к  замене  внешнего  источника  на  распределенный  внутренний  источник  тепловыделения,  действующий  внутри  нагреваемого  тела  в  его  приповерхностном  слое.  Вид  и  тип  источника  задаются  исходя  из  условий  рассматриваемой  задачи,  причем,  в  отличие  от  мгновенных  источников,  изменение  схемы  его  влияния  (например,  при  введении  нестационарности  процесса  [3,  8])  не  требует  задания  новой  модели  нагрева.  Это  обстоятельство  позволяет  применять  метод  внутренних  источников  практически  для  любой  задачи  нагрева  тел  различной  геометрии  разнообразными  источниками.  Кроме  того,  при  задании  функции  внутренних  источников  можно  учесть  конечные  размеры  нагреваемых  заготовок  и  нестационарность  процесса.  Еще  одним  достоинством  этого  метода  является  то,  что  он  позволяет  определять  температуру  в  любой  точке  нагреваемого  тела,  в  том  числе  и  непосредственно  под  пятном  нагрева.

 

Список  литературы:

1. Кутателадзе  С.С.  Основы  теории  теплообмена  /  С.С.  Кутателадзе.  —  Новосибирск:  Наука,  1970.

2. Осовец  С.В.  Расчет  нестационарного  теплового  состояния  плиты  при  ее  нагреве  перемещающимся  источником  /  С.В.  Осовец,  Е.В.  Торопов,  А.В.  Прохоров,  В.Л.  Кириллов  //  Инженерно-физический  журнал.  —  2000.  —  Т.  73,  №  4.  —  С.  757—760.

3. Пашацкий  Н.В.  Аналитический  расчет  распределения  температур  при  многопроходной  сварке  дисковых  деталей  /  Н.В.  Пашацкий,  А.В.  Прохоров,  С.Н.  Кононов  //  Сварочное  производство.  —  2006.  —  №  3.  —  С.  3—6.

4. Пашацкий  Н.В.  Расчет  температурных  полей  дискового  электрода  при  электроэрозионной  резке  материалов  /  Н.В.  Пашацкий,  А.В.  Прохоров,  В.Ф.  Обеснюк  //  Сварочное  производство.  —  2003.  —  №  8.  —  С.  37—41.

5. Пашацкий  Н.В.  Тепловые  процессы  при  обработке  предварительно  нагретой  стальной  плиты  огневой  машиной  /  Н.В.  Пашацкий,  А.В.  Прохоров  //  Известия  ВУЗов.  Черная  металлургия.  —  2001.  —  №  3.  —  С.  46—48.

6. Пашацкий  Н.В.  Тепловые  процессы  при  сварке  плоских  изделий  /  Н.В.  Пашацкий,  А.В.  Прохоров  //  Сварочное  производство.  —  2000.  —  №  7.  —  С.  3—5.

7. Прохоров  А.В.  Моделирование  внешних  источников  теплоты  при  стационарном  нагреве  твердых  тел  /  А.В.  Прохоров  //  Проблемы  современной  науки:  сборник  научных  трудов:  выпуск  5.  Часть  2.  —  Ставрополь:  Логос,  2012.  —  С.  88—93.

8. Прохоров  А.В.  Теплопроводность  и  массообмен  в  системах  с  приповерхностными  источниками:  дис.  …  канд.  техн.  наук  /  А.В.  Прохоров.  —  Озерск,  2003.  —  122  с.

9. Рыкалин  Н.Н.  Расчеты  тепловых  процессов  при  сварке  /  Н.Н.  Рыкалин.  —  М.:  Машгиз,  1954.

Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий

Форма обратной связи о взаимодействии с сайтом