Статья опубликована в рамках: XI Международной научно-практической конференции «Научное сообщество студентов: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ» (Россия, г. Новосибирск, 15 декабря 2016 г.)
Наука: Химия
Скачать книгу(-и): Сборник статей конференции
дипломов
СОСТАВ И УСТОЙЧИВОСТЬ АСКОРБАТОВ КОБАЛЬТА(II)
Исследование закономерностей образования полиядерных координационных соединений d-металлов с биолигандами в водных растворах – одна из центральных задач химии комплексных соединений и бионеорганической химии. Изучение кислотно-основных и координационных равновесий образования комплексов Сo(II) c аскорбиновой кислотой является важным в плане теоретического моделирования равновесных процессов в многокомпонентных системах, в том числе в живой клетке. Аскорбиновая кислота и ее металлокомплексы находят широкое применение в медицине, сельском хозяйстве, в ветеринарии. Для лечения раковых заболеваний в настоящее время применяются аскорбаты цинка(II) и марганца(II). Аскорбат цинка используется также в качестве биологически активной добавки для взрослых, а вместе с аскорбатами марганца (II) - и в качестве кормовой добавки для сельскохозяйственных животных [5]. Кроме того, создан поливитаминный комплекс для спортсменов, содержащий аскорбаты калия, магния, хрома, меди, кальция, цинка. Аскорбаты железа используются для профилактики анемии и повышения уровня гемоглобина в крови. Аскорбиновокислые комплексы находят применение в качестве промоторов роста растений.
Кобальт представляет собой типичный пример так называемого «биометалла», причем биологические эффекты соединений кобальта в организме весьма разнообразны. Единственный металлсодержащий витамин В12 по сути представляет собой координационное соединение кобальта. [3]. Таким образом, изучение комплексообразования ионов кобальта(II) с хелатирующими биолигандами представляет собой фундаментальную проблему и является одним из перспективных направлений на стыке неорганической, органической и биологической химии. Однако приводимые в научной литературе данные о комплексах d-металлов с аскорбиновой кислотой неполны и мало систематизированы. Стоит отметить также малое количество сведений по полиядерному комплексообразованию кобальта(II) c выбранным для изучения лигандом. В системе Co(II) – аскорбат структуроопределяющей частицей является аскорбиновая кислота, которая выступает одновременно и в роли хелата, и в роли мостикового соединения. В свете вышеизложенных соображений актуальность исследования реакций комплексообразования Co(II) с аскорбиновой кислотой представляется очевидной.
В качестве объектов исследования в данном исследовании выступали аскорбиновокислые комплексы кобальта(II). Предметом настоящего исследования являлось изучение состава и устойчивости аскорбатов кобальта(II) в водных растворах.
Целью работы являлось описание пролитических и координационных равновесий и выявление закономерностей образования кобальта(II) в водных растворах.
Изучение равновесий в системах металл - протон – лиганд в водных растворах предполагает измерение какого-либо параметра данной системы, меняющего свое значение при образовании комплексов. Определив значение данного параметра с учетом рН, можно установить состав комплексов, рассчитать константы их образования и определить условия существования подобных частиц. Для решения данной задачи нами использовались рН-метрический и спектрофотометрический методы, а также метод математического моделирования равновесий в системах Mz+ - H+ - L[4,6].
Результаты рН-метрического титрования в системе Co(II) –H2Asc при избытке лиганда приведены на рисунке 1. Для сравнения представлена также кривая титрования для системы Ni(II) - –H2Asc [1].
Рис.1. Результаты рН-метрии в системе Со (II) –аскорбиновая кислота (с(Со(II)) = 0,0010 моль/л; с(H2Asc) = 0,0011 моль/л)
Следует заметить сходство кривых в системахNi(II) –аскорбат и Co(II) - аскорбат и это указывает на то, что в этих системах должны образовываться комплексы сходной стехиометрии.
Полученные данные по стехиометрии и устойчивости аскорбатов никеля(II) при соотношении M:L1:1 был принят нами за основу при математическом описании матриц равновесий в системе Co(II) –аскорбиновая кислота для мольного соотношения металла и лиганда 1:1.При моделировании равновесий в системе Со2+-H2Asc были константы гидролиза катионов кобальта (II): рКг1 = 11,2; рКг2 = 6,0 [2].
Моделирование равновесий реакций комплексообразования показало, что с аскорбиновой кислотой комплексы состава 1:1:0,2:2:3, 2:2:6, 2:2:7([M(H2Asc)]2+, [M2(HAsc)Asc]+, [M(OH)2Asc2]2-, [M(OH)3Asc2]3-) образует как никель, так и кобальт. В системе Со2+-H2Asc обнаружена также биядерная частица 2:2:3([Со2(OH)Asc2]-, которая в растворах солей никеля(II) не образуется. Для всех обнаруженных комплексов на основании данных рН-метрии были рассчитаны константы равновесия образования, приведенные в таблице 1 (R – доля отклонения теоретических значений ñ от экспериментальных – не превышает 3,5%).
Таблица 1.
Состав и устойчивость аскорбатов кобальта (II)
№ |
Комплекс |
Стехиометрическая матрица |
lgK* |
pH max |
αmax, % |
||
Со2+ |
H2Asc |
H+ |
|||||
1 |
[CoH2Asc]2+ |
1 |
1 |
0 |
2,93 |
3,58 |
32,89 |
2 |
[Co2(HAsc)Asc]+ |
2 |
2 |
3 |
-5,82 |
8,02 |
62,24 |
3 |
[Co2(OH)Asc2]- |
2 |
2 |
5 |
-22,94 |
8,63 |
29,30 |
4 |
[Co2(OH)2Asc2]2- |
2 |
2 |
6 |
-31,77 |
8,93 |
25,63 |
5 |
[Co2(OH)3Asc2]3- |
2 |
2 |
7 |
-40,55 |
9,72 |
66,28 |
*Ошибка определения констант, приведенных в таблице 1, не превышает 0,3 логарифмические единицы.
Нами был произведен расчёт констант устойчивости комплексов, исходя из равновесных констант, приведенных в таблице 1. Для форм [CoH2Asc]2+, [Co2(HAsc)Asc]+, [Co2(OH)Asc2]2-, [Co2(OH)2Asc2]2-, [Co2(OH)3Asc2]3- lgβ соответственно составляют 2,93; 12,60; 19,82; 24,98; 30,20.
Полученные значения констант равновесия были использованы для анализа областей существования комплексов в системе Со2+ - H2Asc.
Так же, как и в случае Ni - H2Asc катионная форма 1:1:0 ([Co(H2Asc)]2+) образуется в кислой области (рН < 4,5), однако вклад данной формы не превышает 30%. Широкая область рН 4,5 - 7,5 описывается однозарядным анионом аскорбиновой кислоты, а комплексных форм в данной области нами не идентифицировано. Лишь в слабокислой среде (рН 6,5) доля накопления биядерного комплекса 2:2:3[Co2(HAsc)Asc]+ становиться значимой, достигая в слабощелочной области показателя в 50%. Дальнейший рост рН приводит к тому, что комплекс состава 2:2:3 отщепляет протоны, переходя в формы состава 2:2:3 - 2:2:7, существующие в области рН 8,3 – 10,4. В щелочной среде существенную роль играют процессы гидролиза. Так, при рН 9,5 доля гидроксоформы [Co(OH)3]-достигает 20%.
Схема комплексообразования в системе Со (II) –аскорбиновая кислота 1:1, построенная на основании результатов рН-метрического титрования, представлена на рисунке 2.
Рис. 2. Схема комплексообразования в системе Со (II) –аскорбиновая кислота
Для моноаскорбатов кобальта(II) состава [M(H2Asc)]2+ или аскорбатов [M2(HAsc)Asc]+, [M(OH)2Asc2]2-, [M(OH)3Asc2]3-, образующихся в рассматриваемых системах в одинаковых экспериментальных условиях, наблюдаются закономерности в изменении логарифмов констант образования при изменении суммы двух первых потенциалов ионизации (рис. 3).
Рис. 3. Зависимости логарифмов констант устойчивости аскорбатов от суммы двух первых потенциалов ионизации ионов никеля(II) и кобальта(II): 1 - [M(H2Asc)]2+, 2 – M(OH)+, 3 - [M2(HAsc)Asc]+,4 - [M(OH)2Asc2]2-, 5 - [M(OH)3Asc2]3-
Константы образования комплексов никеля и кобальта увеличиваются пропорционально уменьшению суммы потенциалов ионизации. Подобную корреляцию можно выявить и с гидролитическими свойствами исследованных ионов (рКг1 (Ni2+) = 10,64 - 10,82; рКг1 (Со2+) = 11,20 - 12,20). Выявленные линейные корреляции могут быть использованы при прогнозировании устойчивости комплексов Co(II).
Список литературы:
- Айсувакова, О.П. Никель(II) и L-аскорбиновая кислота: образование комплексных форм металла в водных растворах / О.П. Айсувакова, А.С. Алеева / Иновационные процессы в области естественнонаучного и социально-гуманитарного образования. Третья международная научно-практическая конференция. Оренбург, 17-18 марта 2016 г.: сб. статей / Мин-во образования и науки Рос. Федерации, ФГБОУ ВПО «Оренб. гос. пед. ун-т». – Оренбург: Изд-во ОГПУ, 2016. – С. 6-9.
- Альберт А., Сержант Е. Константы ионизации кислот и оснований. М.: Химия, 1964. 179 с.
- Аналитическая химия: Проблемы и подходы: пер. с англ. / Под.ред. Р. Кельнера, Ж.-М. Мерме, М. Отто, Г. М. Виднера. – М.: Мир: ООО «Издательство АСТ». – 2004. – Т. 1. -608 с.
- Васильев, В.П. Аналитическая химия: учеб.для высших учеб. Заведений/В.П. Васильев- М.:Высшая школа, 1995.- 320с
- Кадырова Р. Г., Кабиров Г. Ф., Муллахметов Р. Р. Изучение реакции комплексообразования аскорбиновой кислоты с ионами цинка и меди (II) //Ученые записки Казанской государственной академии ветеринарной медицины им. НЭ Баумана. – 2015. – №. 222 (2).
- Коростелев, П.П. Фотометрический и комплексонометрический анализ в металлургии / П.П. Коростелев. - М.: Металлургия, 1984. - 272 с.
дипломов
Оставить комментарий