Статья опубликована в рамках: XIX Международной научно-практической конференции «Научное сообщество студентов XXI столетия. ЕСТЕСТВЕННЫЕ НАУКИ» (Россия, г. Новосибирск, 27 мая 2014 г.)
Наука: Биология
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
дипломов
АНТИОКСИДАНТЫ И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ
Крушева Анна Васильевна
студент 2 курса, кафедра медицинской химии НГМУ, РФ, г. Новосибирск
Терах Елена Игоревна
научный руководитель, канд. хим. наук, доцент НГМУ, РФ, г. Новосибирск
E-mail: tei-nsk@ngs.ru
В современных условиях, крайне сложно найти человека, который не слышал бы слово «антиоксидант», ведь мир сейчас переживает настоящий «антиоксидантный бум». Колоссальный интерес к антиоксидантам возник после того, как было доказано их разрушительное воздействие на свободные радикалы, которые оказывают пагубное влияние на организм, вызывая процессы старения и повреждая клетки организма [3]. С задачей нейтрализации свободных радикалов справляются антиоксиданты.
Под антиоксидантами принято понимать группу различных химических веществ, обладающих способностью связывать свободные радикалы, уменьшать интенсивность процессов окисления в организме и, таким образом, нейтрализовать их отрицательное воздействие [2]. Спецификой антиоксидантов является их теснейшая взаимосвязь со свободнорадикальным окислением липидов вообще и свободнорадикальной патологией в частности. Это свойство объединяет антиоксиданты различного строения, каждому из которых присущи свои особенности действия.
В зависимости от механизма антиокислительного действия, различают три типа антиоксидантов [6]: ингибиторы, взаимодействующие непосредственно со свободными радикалами; ингибиторы, взаимодействующие с гидропероксидами и способные их разрушать (подобный механизм разработан на примере диалкилсульфидов); вещества, блокирующие катализаторы свободнорадикального окисления, прежде всего ионы металлов переменной валентности, за счет образования комплексов с металлами.
В настоящее время известно свыше 3000 антиоксидантов только растительного происхождения, и их число стремительно растет. К ним относятся витамины (А, Е, С), биофлавоноиды, минеральные вещества (селен, кальций, цинк и марганец), ферменты (супероксиддисмутаза, каталаза, глутатионпероксидаза) [2]. Можно выделить также, так называемые, структурные антиоксиданты, антиокислительное действие которых обусловлено изменением структуры мембран (к таким антиоксидантам можно отнести андрогены, глюкокортикоиды, прогестерон). К антиоксидантам, по-видимому, следует отнести и вещества, повышающие активность или содержание антиоксидантных ферментов.
Исходя из скоростей реакций, любой ингибитор свободнорадикальных процессов можно охарактеризовать двумя параметрами: антиокислительной активностью и антирадикальной активностью. Последняя определяется скоростью, с которой ингибитор реагирует со свободными радикалами, а первая характеризует суммарную способность ингибитора тормозить окислительный процесс [1]. Именно эти показатели являются основными при характеристике механизма действия и активности того или иного антиоксиданта, однако далеко не для всех случаев эти параметры в достаточной мере изучены.
Свойства любого вещества, действующего как антиоксидант (в отличие от других их эффектов), носят неспецифический характер, и один антиоксидант может заменяться другим природным или синтетическим антиоксидантом. Известно, что замену эффективных природных антиоксидантов (в первую очередь витамин Е) в организме можно осуществлять за счет введения только таких ингибиторов, которые обладают высокой антирадикальной активностью [5].
Введение синтетических ингибиторов в организм оказывает значительное влияние не только на процессы перекисного окисления липидов, но и на метаболизм природных антиоксидантов. Действие природных и синтетических ингибиторов может складываться, результатом чего является повышение эффективности воздействия на процессы перекисного окисления липидов. Кроме этого, введение синтетических антиоксидантов может оказывать влияние на реакции синтеза и утилизации природных ингибиторов перекисного окисления, а также вызывать изменения антиокислительной активности липидов [5]. Таким образом, синтетические антиоксиданты могут использоваться в биологии и медицине в качестве препаратов, воздействующих не только на процессы свободнорадикального окисления, но и на систему природных антиоксидантов, влияя на изменение антиокислительной активности.
Рассматривая антиоксиданты, необходимо также отметить еще один класс веществ, усиливающих эффективность действия ингибиторов. Это вещества-синергисты, которые выступая в качестве доноров протонов для фенольных антиоксидантов, способствуют их восстановлению [1]. Действие комбинации антиоксидантов с синергистами значительно превышает действие одного антиоксиданта. К веществам-синергистам, способным усиливать ингибирующее действие фенольных антиоксидантов, относятся, например, аскорбиновая кислота (витамин С), лимонная кислота, аскорбинат натрия и др.
Антиоксиданты имеют большое практическое значение. Так, в пищевой промышленности для увеличения сроков хранения жиросодержащих продуктов используют природные и синтетические антиоксиданты — α-токоферол (витамин Е), пропиловый, октиловый и додециловый эфиры галловой кислоты, ионол (2,6-ди-трет-бутил-4-метилфенол) и др. Также к антиоксидантам, используемым в качестве пищевых добавок, относятся пектин, аскорбиновая кислота, лимонная кислота, бутилгидрокситолуол, антоцианины, дигидрокверцетин [3].
Антиоксиданты находят применение в клинической практике. К наиболее изученным в настоящее время антиоксидантам относится витамин E, поэтому данное вещество очень часто рассматривают в качестве своеобразного стандарта [3]. Показано, что витамин Е оказывает положительный эффект при лучевом поражении, злокачественном росте, ишемической болезни сердца и инфаркте миокарда, атеросклерозе, в терапии больных дерматозами, при ожогах и стрессах [4].
Важным направлением применения витамина Е является его использование при различного рода стрессовых состояниях [3]. Так, установлено, что витамин Е уменьшает интенсивность процессов перекисного окисления липидов, что обычно наблюдается при иммобилизационном, акустическом и эмоционально-болевом стрессах. Он также предупреждает нарушения в печени при гипокинезии, которая вызывает усиление свободнорадикального окисления ненасыщенных жирных кислот липидов, особенно в первые 4—7 дней, т. е. в период выраженной стрессовой реакции.
Из синтетических антиоксидантов высокую эффективность проявляет ионол, известный в клинике под названием дибунол [3]. Ионол показан для профилактики острых ишемических повреждений органов и постишемических расстройств. Он используется в лечении окологических заболеваний, лучевых и трофических поражениях кожи и слизистых оболочек, в терапии больных дерматозами, способствует быстрому заживлению язвенных поражений желудка и двенадцатиперстной кишки. Ионол обладает также некоторыми свойствами антигипоксантов, он увеличивает продолжительность жизни при острой гипоксии и ускоряет восстановление после гипоксических расстройств.
Ионол увеличивает длительность работы спортсменов при больших физических нагрузках, т. е. повышает выносливость организма при интенсивной работе [3]. Он предотвращает активацию перекисного окисления липидов и нарушения высших отделов центральной нервной системы, что наблюдается на фоне интенсивных нагрузок, а также повышает эффективность работы левого желудочка сердца.
Учитывая участие свободнорадикальных механизмов в процессе старения организма, можно полагать возможность повышения продолжительности жизни с помощью антиоксидантов. Такие эксперименты на мышах, крысах, морских свинках, Neurospora crassa и Drosophila проводились, но результаты их оказались не совсем однозначные, что связывают с неадекватностью методов оценки конечных результатов [2]. В случае экспериментов на Drosophila удалось зафиксировать достоверное увеличение продолжительности жизни.
С точки зрения некоторых ученых, применение антиоксидантов не продлевает срок человеческой жизни, а даже, наоборот ведет к ее сокращению [2]. Проведенные исследования показали увеличение уровня смертности на 4 % у употребляющих антиоксиданты по сравнению с пациентами, принимающими плацебо. Данная связь прослеживалась, как у здоровых, так и у страдающих различными заболеваниями больных [2]. Эксперименты проводились со смесями антиоксидантов, а также с применение одного антиоксиданта. Это позволило сделать следующие выводы: злоупотребление витаминам Е, А и β-каротином повышает уровень смертности пациентов, а селен и витамин С не оказывают влияние на продолжительность жизни.
Таким образом, антиоксиданты помогают организму противостоять окислительному стрессу и предупреждать развитие ряда заболеваний, но их применение, как и применение любых химических веществ, требует меры, так как может возникнуть обратный эффект, обусловленный изменениями на молекулярно-клеточном уровне после уничтожения свободных радикалов.
Список литературы:
- Басов А.А. Современные способы стандартизации антиоксидантных лекарственных средств и биологически активных добавок // Современные проблемы науки и образования. — 2006. — № 4. — С. 149—152.
- Бурлакова Е.Б. Блеск и нищета антиоксидантов // Наука и жизнь. — 2013. — № 3. — С. 27—34.
- Владимиров Ю.А. Свободные радикалы и АО // Вестник РАМН. — 2002. — № 7. — С. 43—51.
- Все о витаминах / Перевод с английского С.И. Незлобиной. М.: КРОН-ПРЕСС, 2001. — 201 с.
- Иванов В.Г., Горленко В.А. Антиоксиданты. М.: Академия, 2009. — 320 с.
- Реутов О.А., Курц А.Л. Органическая химия. М.: Просвещение, 2004. — 320 с.
дипломов
Оставить комментарий