Статья опубликована в рамках: V Международной научно-практической конференции «Научное сообщество студентов XXI столетия. ЕСТЕСТВЕННЫЕ НАУКИ» (Россия, г. Новосибирск, 25 октября 2012 г.)
Наука: Физика
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
отправлен участнику
КРИСТАЛЛЫ. ВЫРАЩИВАНИЕ МОНО- И ПОЛИКРИСТАЛЛОВ
Кошмагамбетов Жансерик Нұрланұлы
студент 2 курса ГЮК КазГЮУ,г. Астана.
E-mail: 95 zhan @ mail.ru
Жумабаева Сауле Какимовна
преподаватель физики высшей квалификационной категории ГЮК КазГЮУ.
В повседневной жизни мы часто встречаемся с процессом кристаллизации и образованием различных форм фигур. Например — красивые ледяные узоры на стеклах окон зимой или белый налет на поверхности после высыхания разлившейся соленной воды. Как и почему это происходит? Поиски ответов на эти вопросы и вызвали интерес к процессу кристаллизации.
Многие монокристаллы и поликристаллы широко применяются в кристаллографии, кристаллооптике, радиотехнике, в запоминающих устройствах, для измерения слабых температур, в технике управления световыми лучами, в обработке материалов, в бурении, в часах, в точных приборах
Цель исследования: исследование зависимости формы и размеров кристаллов от температуры
Задачи исследования:
1. Вырастить монокристалл.
2. Вырастить поликристалл.
3.Вырастить монокристаллы на поверхности различных фигур
Объект исследования:
1. раствор медного купороса
2. раствор поваренной соли
Глава 1. Теория кристаллов.
Кристаллы — это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Поэтому кристаллы имеют плоские грани. Например, крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы.
Кристаллическую структуру имеют металлы. Если взять сравнительно большой кусок металла, то на первый взгляд его кристаллическое строение никак не проявляется ни во внешнем виде куска, ни в его физических свойствах. Металлы в обычном состоянии не обнаруживают анизотропии.
Дело здесь в том, что обычно металл состоит из огромного количества сросшихся друг с другом маленьких кристалликов. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированы по отношению друг к другу беспорядочно. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям.
Твердое тело, состоящее из большого числа одиночных кристалликов, называют поликристаллическим. Одиночные кристаллы называют монокристаллами.
К поликристаллам относятся не только металлы. Большинство кристаллических тел — поликристаллы, так как они состоят из множества сросшихся кристаллов. Одиночные кристаллы — монокристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям.
Жидкие кристаллы — вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой — расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной). Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах жидкие кристаллы замерзают, превращаясь в твёрдые тела. Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Свойствами жидких кристаллов можно управлять, подвергая их действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров.
Соблюдая большие предосторожности, можно вырастить кристалл больших размеров — монокристалл.
В обычных условиях поликристаллическое тело образуется в результате того, что начавшийся рост многих кристаллов продолжается до тех пор, пока они не приходят в соприкосновение друг с другом, образуя единое тело — поликристалл (см. рис. 1).
Рисунок 1. Поликристалл меди
Чтобы вырастить кристалл, полезно знать, какие процессы управляют его ростом; почему разные вещества дают кристаллы различной формы, а некоторые вовсе не образуют кристаллов; что надо сделать, чтобы кристаллы получились большими и красивыми.
Если кристаллизация идёт очень медленно, то получается один большой кристалл, если быстро — множество мелких кристаллов Выращивание кристаллов производят разными способами:
1. Охлаждение насыщенного раствора.
С понижением температуры растворимость большинства веществ уменьшается, и они, как говорят, выпадают в осадок. Сначала в растворе и на стенках сосуда появляются крошечные кристаллы-зародыши. Когда охлаждение медленное, а в растворе нет твёрдых примесей (скажем, пыли), зародышей образуется немного, и постепенно они превращаются в красивые кристаллы правильной формы. При быстром охлаждении центров кристаллизации возникает много, сам процесс идёт активнее и правильных кристаллов при этом не получится (см. рис. 2)
Рисунок 2 На стенках сосуда образовались множество различных мелких кристалликов
2. Постепенное удаление воды из насыщенного раствора
В этом случае чем медленнее удаляется вода, тем лучше получаются кристаллы. Можно оставить открытый сосуд с раствором при комнатной температуре на длительный срок — вода при этом будет испаряться медленно (особенно если сверху положить лист бумаги или прикрыть марлей). Растущий кристалл можно либо подвесить в насыщенном растворе на тонкой прочной нитке, либо положить на дно сосуда. В последнем случае кристалл периодически надо поворачивать на другой бок. По мере испарения воды в сосуд следует подливать свежий раствор (см. рис. 3).
Рисунок 3 Кристалл, полученный на дне сосуда из раствора медного купороса с добавлением соли и железных опилок
3. Быстрое удаление воды из насыщенного раствора
В этом случае кристаллы получаются правильной формы, с острыми гранями, но мелкими (раствор находился в широком сосуде рядом с нагревателем) (см. рис. 4)
Рисунок 4 Монокристаллы, полученные при быстром испарении раствора
Выращивание кристаллов — процесс интересный, занимательный, но требующий бережного и осторожного отношения к своей работе. Время от времени кристаллизатор необходимо чистить: сливать раствор и удалять мелкие кристаллики, наросшие на основном, а также на стенках и дне сосуда. Теоретически размер кристалла, который можно вырастить таким способом, неограничен. Если выращенный кристалл оставить открытым в сухом воздухе, он, постепенно теряя содержащуюся в нём воду, превратится в невзрачный серый порошок. Чтобы предохранить кристалл от разрушения, его можно покрыть бесцветным лаком.
Глава 2.
Эксперимент № 1. Выращивание кристаллов поваренной соли
Этот процесс не требует наличия каких-то особых химических препаратов. Кристаллы поваренной соли NaCl представляют собой бесцветные прозрачные кубики.
Насыпал пищевую соль в стакан с водой при температуре 20°С и оставил на несколько минут, предварительно помешав. За это время соль растворилась. Затем добавил ещё соль и снова перемешал. Повторял этот этап до тех пор, пока соль уже не будет растворяться и будет оседать на дно стакана. Так я получил насыщенный раствор соли. Перелил его в чистый стакан такого же объёма, избавившись при этом от излишек соли на дне. Выбрал один более крупный кристаллик поваренной соли и положил его на дно стакана с насыщенным раствором. Уже через 3 дня было заметно значительный для кристаллика рост. С каждым днём он увеличивался. Затем проделал всё то же ещё раз (приготовил насыщенный раствор соли и опустил в него этот кристаллик), он стал расти гораздо быстрее — от размеров 0,3 до ,0,9 см за следующие 3 дня (см. рис. 5)
Рисунок 5 Бесцветные прозрачные кубики. поваренной соли
Эксперимент № 2. Выращивание кристаллов медного купороса
Раствор медного купороса приготовил следующим образом: налил воды в стакан (200 г) и поставил его в кастрюлю с тёплой водой при 50°С и начал растворять 100 г порошка медного купороса также, как и раствор поваренной соли, оставил на несколько дней. Сначала, способом быстрого испарения в открытом сосуде на стенках получил монокристалл медного купороса: (см. рис. 6)
Рисунок 6 Монокристалл, зародыш для поликристалла
Затем поместил его в новый раствор для дальнейшего наращивания при комнатной температуре и закрытом сосуде. Через 2 недели получил поликристалл размером 2,8 см (см рис. 7).
Рисунок 7 Поликристалл размером 2,8 см
Эксперимент № 3. Выращивание красных кристаллов меди:
На дно широкой чаши, равномерно по площади дна, положил немного медного купороса, сверху насыпал поваренной соли и закрыл всё это вырезанным кружком бумаги, на неё положил железные стружки. Всё это вместе залил насыщенным раствором поваренной соли и оставил чашу на неделю. За это время выросли иглоугольные красные кристаллы меди. Затем, также как и в предыдущем случае, произвел наращивание и получил монокристалл и поликристаллы (см. рис. 8).
Рисунок 8 Красные моно — и поли-кристаллы меди
Эксперимент № 4. Исследования зависимости роста кристалла от
температуры
Результаты исследования зависимости роста от температуры кристаллизации показали,что, чем выше температура кристаллизации, тем больше размеры и острее углы (см. рис. 9 и 10). Оба раствора готовились при температуре 80°С, затем, для кристалла № 9 поддерживалась температура 32—35°С, а для № 10 — температура 58—60°С., росли в течении 2 недель.
Рисунок 9 Монокристалл вырос при тепературе 32 градуса
Рисунок 10 Монокристалл вырос при тепературе при 59 градусах
Процесс кристаллизации можно использовать для покрытия поверхности различных фигур:
1. на рис. 11 фигура дракона с наросшими на ней кристаллами. В раствор медного купороса добавлена капелька зеленки, фигура сделана из проволоки, обмотанной тоненькой нитью)
Рисунок 11 Фигура дракона с наросшими на ней кристаллами
2. на рис. 12 веточка розы с наклеенными на нее кубическими
Рисунок 12 Веточка розы с наклеенными на нее кубическими кристалликами голубой меди
3. кристалликами голубой меди (такие кристаллы получены при температуре 80°С и быстром охлаждении).
4. На рис. 13 электрический ночной светильник. В начале методом охлаждения насыщенного раствора получены мелкие кристаллики на поверхности стеклянной колбы, затем наклеены кубические кристаллы, полученные методом быстрого испарения при температуре 80°С
Рисунок 13. Электрический ночной светильник
Заключение
· Результаты исследований показали, что форма и размеры кристаллов зависят от температуры насыщенного раствора, (это можно увидеть по полученным кристаллам).
· Используя эту технологию выращивания кристаллов можно покрыть кристаллами нужного цвета поверхность различных фигур.
· В целом процесс выращивания кристаллов из растворов, при котором играет роль диффузия тепла и «питательного» материала, но самое главное-распределение и укладка молекул при выходе их на кристалл, настолько сложен, что в настоящее время невозможно дать количественную оценку скорости роста кристаллов в терминах молекулярных перемещений. Иными словами, до сих пор никто еще не смог, приняв за основу некоторые числовые характеристики, отражающие свойства и движение молекул, успешно рассчитать скорость роста кристалла.
В перспективе я буду продолжать работу, и поставил перед собой цель —
вырастить кристаллическое дерево.
Список литературы:
1.Прохоров А.М. Физика: большой энциклопедический словарь. Научное издательство «Большая Российская энциклопедия», 1998, — 319 с, 330 с.
2.[Электронный ресурс] — Режим доступа — URL: http www.mirkristalkov.com.
3.[Электронный ресурс] — Режим доступа — URL: http www.alhimik.ru.
отправлен участнику
Оставить комментарий