Статья опубликована в рамках: LXIV Международной научно-практической конференции «Научное сообщество студентов XXI столетия. ЕСТЕСТВЕННЫЕ НАУКИ» (Россия, г. Новосибирск, 31 мая 2018 г.)
Наука: Физика
Скачать книгу(-и): Сборник статей конференции
УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ ДЛЯ НЕСТАЦИОНАРНОГО СЛУЧАЯ ПРИ ИЗУЧЕНИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СТУДЕНТАМИ ИНЖЕНЕРНЫХ НАПРАВЛЕНИЙ АГРАРНЫХ ВУЗОВ
Аннотация: Данная статья посвящена уравнению теплопроводности для нестационарного случая. Решение таких задач, которые по своему содержанию приближены к реальным ситуациям, способствуют развитию профессиональных компетенций.
Ключевые слова: дифференциальное уравнение, решение дифференциального уравнения, уравнение теплопроводности, стержень неограниченный, ограниченный с одного конца, ограниченный с обоих концов.
Курс обучения дисциплине «Математика» студентов инженерно-технических направлений и специальностей при изучении темы «Дифференциальные уравнения», как правило, ограничен рассмотрением обыкновенных дифференциальных уравнений, и совершенно несправедливо дифференциальные уравнения в частных производных остаются в стороне. Именно последние представляют наибольший интерес, поскольку ими описываются процессы и явления, происходящие в окружающей действительности.
Так, к примеру, уравнение , где - температура однородного тела в точке , ограниченного поверхностью в момент времени , является уравнением теплопроводности для нестационарного случая. Если однородным телом, поглощаемым количество тепла, является стержень, то уравнение примет вид
. (1)
Рассмотрим ряд примеров, иллюстрирующие нахождение температуры стержня в точке в зависимости от его длины.
Пример 1. Дан тонкий однородный стержень длины , изолированный от внешнего пространства и имеющий начальную температуру . Концы стержня поддерживаются при температуре, равной нулю. Определить температуру стержня в момент времени (рис. 1) [1, с. 252].
Решение. Из условия задачи следует, что стержень ограничен с обоих концов, т.е. . Закон распределения температуры стержня описывается уравнением (1). Для нахождения температуры стержня в момент времени применим следующие формулы:
, где .
Итак,
;
при четном , при нечетном или , Следовательно, температура стержня будет определяться функцией
,
являющейся решением уравнения (1) при заданных начальных и граничных условиях.
Пример 2. Имеется однородный полубесконечный стержень, левый конец которого поддерживается нулевой температурой. Найти закон изменения температуры в момент времени , если в начальный момент времени температура изменялась по закону: , причем (рис. 2).
Решение. Закон изменения температуры стержня задается уравнением (1). В случае ограниченности стержня с одной стороны, температуру можно найти по формуле
.
В нашем случае .
Применяя подстановки: и и учитывая, что , где – функция Лапласа, окончательно получим:
.
Пример 3. Имеется однородный бесконечный стержень, температура которого в начальный момент времени изменялась по прямолинейному закону от точки к точке . Определить, по какому закону изменялась температура стержня при , если закон изменения ее описывается уравнением (рис. 3).
В начальный момент времени температура изменялась по закону
.
В случае бесконечного стержня температуру стержня можно найти по формуле:
.
Следовательно,
Рассмотренные задачи были придуманы нами, что послужило толчком для творческого развития студентов, их мышления, внимания, а также применения ими ранее изученных математических методов.
Подведя итоги, необходимо заметить, что в данной статье мы ограничились рассмотрением уравнения теплопроводности для нестационарного случая. В дальнейшем мы намерены исследовать уравнение для стационарного случая.
Список литературы:
- Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч. 2: Учеб. пособие для студентов втузов. -3-е изд., перераб. и доп. – М.: Высш. школа,1980. – 365 с.
Оставить комментарий