Статья опубликована в рамках: Научного журнала «Студенческий» № 5(5)
Рубрика журнала: Технические науки
Секция: Моделирование
Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2
МОДЕЛИРОВАНИЕ ЭЛЕМЕНТНОЙ БАЗЫ ПРИЕМНЫХ ТРАКТОВ СПУТНИКОВЫХ СИСТЕМ С ПОМОЩЬЮ ПАКЕТА ПРОГРАММ CST MICROWAVE STUDIO
Введение
Современные СВЧ устройства: радиоприемники, передатчики, системы переноса информации на радиочастоте – фактически состоят из антенны, радиоканала приема/передачи, блоков перевода информации из аналогового вида в цифровой и обратно и цифровой части. Отдельные радиотехнические узлы реализуются в виде микросхем и процессоров, поэтому проектирование полной системы приема и обработки радиоволн включает анализ коммутационных, модуляционных и прочих узлов. Эти и другие особенности современных радиосистем требуют разработки и исследований новых методов анализа, синтеза и проектирования как всей системы, так и отдельных узлов.[1]
Моделирования в программе CST
Рассмотрим процесс моделирования блока СВЧ тракта на примере построения нескольких каскадов малошумящего усилителя (МШУ). Для наглядности рассмотрим МШУ-HMC460, со следующими интересующими нас параметрами: Частота – 6 - 18 ГГц; усиление – 14 дБ; коэффициент шума – 2.5 дБ; входные потери – 22 дБ; выходные потери – 15 дБ. Установим ее на плату – материал – фольгированный Rogers 4350, толщиной 0,508 мм.
Для дальнейшего проектирования рассчитаем ширину микрополосок в тракте и построим упрощенную модель нашей системы рисунок 1.
Рисунок 1. Модель установки МШУ на плату. |
Следующий шаг – моделирование перехода МШУ - плата. Рассмотрим два варианта перехода: с помощью золотой проволоки или с помощью золотой ленты.
Вариант перехода с помощью проволок (диаметр проволоки 25 мкм)
а |
б |
Рисунок 2. Переход с платы на МШУ с помощью одной проволоки: а) 3D вид модели; б) S-параметры модели. |
Так как параметры перехода нас не устраивают, рассмотрим возможность «распайки» с помощью нескольких проволок. На рис.3 приведены данные для лучшего расположения проволок.
а |
б |
Рисунок 3. Переход с платы на МШУ с помощью двух проволок: а) 3D вид модели; б) S-параметры модели. |
И даже при учете этого, при переходе с кристалла на плату мы теряем очень много мощности. Нам нужно чтобы сигнал проходящий через первый каскад имел минимальные значения S11 < -20 дБ, S21> -1,5 дБ. Для этого рассмотрим вариант перехода с помощью ленты.
Вариант перехода с помощью золотой ленты (ширина ленты – 0.1 мм)
а |
б |
Рисунок 4. Переход с платы на МШУ с помощью золотой ленты: а) 3D вид модели; б) S-параметры модели. |
Как видно из рисунков параметры переходы с использованием ленты намного лучше: потери на 19 дБ меньше, а к-т отражения на 2 дБ лучше. Таким образом результаты моделирования показали адекватность модели расчета в виде ленточной перемычки и неадекватность модели в виде проволок.
Так же, был промоделирован способ установки МШУ на плату. Наиболее популярными являются соосная и перпендикулярная установка корпусов модулей, а в связи с тем, что в данной работе нас интересует построение нескольких каскадов МШУ, для изучения их взаимодействия и воздействия на другие части нашего блока, мы не будем строить модель самого МШУ и воспользуемся S параметрами данного элемента, предоставляемыми фирмой Analog devices. Поэтому дальнейшие характеристики модели МШУ будем рассматривать вместе с блоком характеристик. На рис. 5 приведена модель установки МШУ с помощью перемычек, схематическая модель с установленным блоком S-параметров и сами S-параметры получившейся системы.
а |
б |
в |
Рисунок 5. Установка 1 МШУ на подложку: а) 3D модель; б) схема с подключенным блоком S-парамтеров; в) S-параметры модели. |
Рассмотрим вариант модели с согласованием нескольких элементов.
Согласование двух МШУ при их соосном позиционировании на плате
а |
б |
в |
г |
Рисунок 6. Параметры МШУ при их соосной установке: а) 3D модель перехода МШУ-МШУ; б) S-параметры перехода МШУ-МШУ; в) 3D модель полной установки на плате; г) S-параметры полной установки |
Согласование двух МШУ при их перпендикулярном позиционировании на плате
а |
б |
в |
г |
Рисунок 7. Параметры МШУ при их перпендикулярной установке: а) 3D модель перехода МШУ-МШУ; б) S-параметры перехода МШУ-МШУ; в) 3D модель полной установки на плате; г) S-параметры полной установки |
Согласование двух МШУ при их параллельном позиционировании на плате
а |
б |
в |
г |
Рисунок 8. Параметры МШУ при их параллельной установке: а) 3D модель перехода МШУ-МШУ; б) S-параметры перехода МШУ-МШУ; в) 3D модель полной установки на плате; г) S-параметры полной установки |
Результаты моделирования
В данной статье были рассмотрены различные варианты установки МШУ на подложку. Исходя из полученных данных, можно сделать вывод, что наилучшие параметры мы получаем при установке двух каскадов МШУ соосно и при распайки их между собой и на плату с помощью золотой ленты.
Список литературы:
- Курушин, А. А. Проектирование СВЧ-устройств в среде CST Microwave Studio: учебное пособие по курсу "Автоматизированное проектирование систем и устройств" по направлению "Радиотехника" / А. А. Курушин, А. Н. Пластиков, Нац. исслед. ун-т "МЭИ" . – М.: Издательский дом МЭИ, 2012 . – 152 с.
- Официальный сайт Computer Simulation Technology (CST). URL: https://www.cst.com/Applications/Category/Circuits-And-Components (Дата обращения: 27.04.17)
Оставить комментарий