Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: Научного журнала «Студенческий» № 39(209)

Рубрика журнала: Технические науки

Секция: Моделирование

Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2, скачать журнал часть 3, скачать журнал часть 4, скачать журнал часть 5, скачать журнал часть 6, скачать журнал часть 7, скачать журнал часть 8, скачать журнал часть 9, скачать журнал часть 10, скачать журнал часть 11

Библиографическое описание:
Милев И.Ю. СТАТИСТИЧЕСКАЯ УСТОЙЧИВОСТЬ ОЦЕНОК // Студенческий: электрон. научн. журн. 2022. № 39(209). URL: https://sibac.info/journal/student/209/272008 (дата обращения: 15.01.2025).

СТАТИСТИЧЕСКАЯ УСТОЙЧИВОСТЬ ОЦЕНОК

Милев Илья Юрьевич

студент, кафедра магистратуры, Донской Государственный Технический Университет,

РФ, г. Ростов-на-Дону

STATISTICAL STABILITY OF ESTIMATES

 

Ilya Milev

student, Department of Master’s Degree, Don State Technical University,

Russia, Rostov-on-Don

 

АННОТАЦИЯ

Анализ статистических характеристик и их устойчивость.

ABSTRACT

Analysis of statistical characteristics and their stability.

 

Ключевые слова: статистика.

Keywordsstatistics.

 

Возмущение экспертных мнений осуществлялось в рамках следующей процедуры. Исходное мнение каждого из экспертов претерпевало единичную случайную коррекцию. Случайным образом выбирался фактор с рангом x и равновероятным образом взаимно переставлялся с фактором, имеющим ранг на единицу больше, или на единицу меньше.

 

Рисунок 1. Окрашенная корреляционная матрица экспертной оценки сравнительной важности факторов производственной безопасности на основании индивидуальных мнений 19-ти экспертов для одной случайной перестановки у каждого эксперта

 

Рисунок 2. Отклонение частных экспертных мнений от коллективного среднего, одна случайная перестановка для каждого эксперта

 

Как видно из данных на рис. 1-2 единичное случайное возмущение привело к появлению одного эксперта с существенно отличным от общего мнением. В числовом выражении возмущение индивидуального мнения на ~ 1 % привело к несогласованности общей оценки с ~ 0,5 % экспертного сообщества.

 

Рисунок 3. Эмпирическая функция распределения для отклонения частных экспертных мнений от коллективного среднего и ее аппроксимация кусочно-линейной зависимостью, одна случайная перестановка для каждого эксперта

 

 .                                         (1)

Как видно из данных рис. 3 разброс экспертных мнений при однократном возмущении характеризуется, вероятно, функцией распределения, похожей на Гауссову нормальную.

 

Список литературы:

  1. И. В. Гребенникова Методы оптимизации, 2017
  2. Зенков А.В. Численные методы, 2016.

Оставить комментарий