Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: Научного журнала «Студенческий» № 21(191)

Рубрика журнала: Технические науки

Секция: Радиотехника, Электроника

Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2, скачать журнал часть 3, скачать журнал часть 4, скачать журнал часть 5, скачать журнал часть 6, скачать журнал часть 7, скачать журнал часть 8, скачать журнал часть 9

Библиографическое описание:
Прудников Н.А. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ // Студенческий: электрон. научн. журн. 2022. № 21(191). URL: https://sibac.info/journal/student/191/257267 (дата обращения: 15.01.2025).

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ГИБРИДНЫХ ИНТЕГРАЛЬНЫХ СХЕМ

Прудников Николай Андреевич

студент, кафедра Электротехника и Электроника, Донской Государственный Технический Университет,

РФ, г. Ростов-на-Дону

TECHNOLOGY OF PRODUCTION OF HYBRID INTEGRATED CIRCUITS

 

Nikolay Prudnikov

student, Don State Technical University,

Russia, Rostov-on-Don

 

АННОТАЦИЯ

В данной статье представлено описание изготовления гибридных интегральных схем с пассивными элементами.

ABSTRACT

This article describes the manufacture of hybrid integrated circuits with passive elements.

 

Ключевые слова: гибридные интегральные схемы; воздушные мостовые соединения; магнетронное напыление; гальваническое осаждение; пассивные элементы; фотолитография.

Keywords: hybrid integrated circuits; air bridge connections; magnetron sputtering; galvanic deposition; passive elements; photolithography.

 

Твердотельная электронная компонентная база востребована во многих областях создания современных электронных приборов [1]. Развитие микро- и наноэлектроники, а в частности полупроводниковых элементов и гибридных интегральных схем (ГИС) на их основе, происходит очень быстро. Разрабатываются приборы для работы в области высоких частот, больших мощностей и температур при минимизации их размеров [2]. Особое внимание уделяется повышению надежности, стабильности и долговечности работы всей интегральной микросхемы (ИС). Одной из самых важных частей любой ИС является металлизация.

Технология производства современных ГИС хорошо отработана, но некоторые задачи требуют разработки новых технологий. Металлизация является такой задачей. На сегодняшний день в производстве ИС для формирования металлизации применяется дорогостоящий метод термического испарения золота. Предполагаемой альтернативой данному методу является комбинация методов магнетронного напыления и гальванического осаждения, при которой золото осаждается гальванически на топологию, сформированную методами фотолитографии по металлизации, полученной магнетронным распылением. Такой подход позволяет существенно удешевить и упростить производство ИМС. Еще одной задачей является необходимость создания перемычки между проводниками, которые нет возможности соединить, не замкнув с проводниками, проходящими между ними.

 

Рисунок 1. Этапы изготовления гибридной интегральной схемы

 

На подготовленную подложку методом магнетронного напыления наносятся слои тантала (в качестве резистивного слоя и проводящего слоя для осаждения золота), меди (в качестве основного проводящего слоя) и хрома (временный защитный слой), после чего методами фотолитографии формируется структура первого слоя металлизации (этап 1, рисунок 1).

После стравливания хрома в селективном травителе производится гальваническое осаждение никеля и золота, после чего формируются резисторы путем селективного стравливания тантала через фоторезистивную маску (этап 2, рисунок 1).

Формирования диэлектрика конденсатора осуществляется путем магнетронного напыления диэлектрика поверх негативной фоторезистивной маски и последующего процесса взрывной фотолитографии (этап 3, рисунок 1).

Методами фотолитографии формируется поддерживающий слой мостового соединения, после чего формируется слой никеля методом магнетронного напыления (этап 4, рисунок 1).

Слой золота формируется методом гальванического осаждения через фоторезистивную маску (этап 5, рисунок 1).

Заключительным этапом формирования МИС является стравливание никеля и удаление поддерживающего слоя фоторезиста путем растворения в диметилформамиде.

 

Список литературы:

  1. Baliga, J.B. (2005). Silicon RF power MOSFETS. World Scientific Publishing Co. Pte. Ltd. UK, London.
  2. Kudryavtsev I. (2016). Teaching digital electronics and microprocessors in a University. CEE-SECR '16: Proceedings of the 12th Central and Eastern European Software Engineering Conference in Russia Article No. 6. Moscow, Russian Federation.

Оставить комментарий