Статья опубликована в рамках: Научного журнала «Студенческий» № 18(104)
Рубрика журнала: Технические науки
Секция: Машиностроение
Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2, скачать журнал часть 3, скачать журнал часть 4
СОЗДАНИЕ УСТАНОВКИ СОВМЕЩЕННОЙ ОБРАБОТКИ ПОЛЫХ ЦИЛИНДРОВ С ИССЛЕДОВАНИЕМ И МОДЕЛИРОВАНИЕМ РЕЖУЩЕГО БЛОКА
В автомобильной промышленности широко используются гидро- и пневмоцилиндры, например, в исполнительных элементах различных механизмов и устройств.
В виду большого количества этих деталей их необходимо изготавливать в широком диапазоне габаритных размеров, большая часть из которых относиться к нежестким деталям с глубокими отверстиями (l / d >10). К таким гидроцилиндрам можно отнести: подъемные механизмы, элементы кранов и домкратов и т.д. В большинстве случаев таким гидроцилиндрам необходимо функционировать в сложных условиях, например: низкие и высокие температуры, запыленность. Но первостепенной проблемой является непосредственно внутреннее давление возникаемое внутри гидроцилиндров. Соответственно, чем выше качество гидроцилиндров, тем выше надежность и безопасность их эксплуатации [1].
Основной причиной отказов таких цилиндров является нарушение герметичности, что является следствием недостаточной точности обработки, а также недостаточного и неравномерного качество внутренней поверхности. Для устранения этих проблем используется режущая головка, в которой совмещалось два процесса: резание и поверхностно пластическое деформирование.
Типовая конструкция режуще – раскатной головки (рисунок 1) включает в себя такие элементы как: режущий блок, который в свою очередь должен устанавливаться на базовую оправку с раскатной частью; хвостовик, устанавливающийся в шпинделе станка.
Рисунок 1. Конструкция режуще – раскатной головки
Такой инструмент позволяет обрабатывать глубокие отверстия с высокой точностью и шероховатостью поверхности.
Совмещённая обработка резанием и ППД позволяет обеспечить высокую производительность при заданной точности, качестве. Общая стоимость при совмещении обработки резанием и метода ППД значительно меньше, чем при хонинговании, притирке доводке и т.д.
В большинстве случаев гидроцилиндры получают из холоднотянутых или горячекатаных труб. В связи с чем заготовки имеют низкую точность размеров, т.е. ошибки округлости и погрешности прямолинейности, что приводит к сложности их обработки. Для выявления путей минимизации погрешностей продольного и поперечного профилей глубокого отверстия при растачивании нежесткой гильзы гидроцилиндра, использовался метод моделирования в программе SolidWorks [2].
Для оценки величины увода оси в Excel определяется максимальная амплитуда A колебаний резцов, как половина разницы максимального и минимальных значений перемещения. Это дало возможность по известной формуле [3] определить величину увода оси отверстия.
На рисунке 2 изображен график положения режущей кромки от времени.
Рисунок 2. Зависимость положение режущей кромки инструмента от времени
Согласно графику увод инструмента можно поделить на 3 участка: заход режущего инструмента, lбор<lпр (при Dmax) и lбор>lпр. Второй участок показывает возрастание увода при обработке, а на третьем участке наоборот уменьшение.
С помощью него получилось исследовать влияние на процесс образования указанных погрешностей величины отклонения оси отверстия заготовки от прямолинейности.
Список литературы:
- Боярский В.Г., Шеров К.Т., Сихимбаев М.Р., Макеев В.Ф. Самоустанавливаемость плавающего резцового блока в комбинированном инструменте при обработке на труборасточных станках // Фундаментальные исследования. №6-2.- 2010 – С. 414-418.
- Горелова А. Ю., Кристаль М. Г. Инструмент для обработки глубоких отверстий // Обработка металлов (технология, оборудование, инструменты). - 2015 - №3. – С. 75-81.
- Уткин Н. Ф., Кижняев Ю.Н., Плужников С.К. // Обработка глубоких отверстий. Л.: Машиностроение, 1988. - 269 с.
Оставить комментарий