Статья опубликована в рамках: I Международной научно-практической конференции «Естественные и математические науки в современном мире» (Россия, г. Новосибирск, 24 декабря 2012 г.)
Наука: Химия
Секция: Физическая химия
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
дипломов
ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ АЛИФАТИЧЕСКИХ АМИНОКИСЛОТ
Смельцова Ирина Леонидовна
старший преподаватель, ННГАСУ,
г. Н. Новгород
e-mail: Irina-Smelcova@yandex.ru
Зеляев Игорь Александрович
канд. хим. наук, профессор ННГАСУ,
г. Н. Новгород
Митрофанова Светлана Валерьевна
канд. хим. наук, доцент ННГАСУ,
г. Н. Новгород
Литературные данные о распаде аминокислот не многочисленны. По данным работы [3] основными продуктами при термической деструкции являются CO2, CO, NH3 и H2O. Однако есть сведения, что при нагревании может образоваться циклический дипептид [1].
Целью настоящей работы является исследование термической стабильности алифатических аминокислот и определение продуктов реакции при термораспаде аминокислот.
В качестве объектов исследования были выбраны валин, лейцин, изолейцин и фенилаланин. Определение температуры, соответствующей началу термического разложения аминокислот проводили в статических условиях, как указано в [4]. Заметное разложение аминокислот, сопровождающееся образованием летучих продуктов, наблюдается при температурах существенно ниже температуры плавления. Так газообразные продукты разложения образуются для валина (т. пл. 3150С), лейцина (т. пл. 3370С) и изолейцина (т. пл. 2880С) при температуре 2700С и для фенилаланина — при 2450С (т. пл. 2840С).
Характер изменения давления образующихся летучих продуктов разложения аминокислот, представленный в координатах давление (р) — время (t), позволяет выделить область интенсивного газовыделения (средний участок на кривых вне индукционного периода разложения) и по нему оценить эффективные константы скорости реакции. Расчет констант скорости брутто-процесса был проведен по уравнению реакции первого порядка:
где: и — начальное и конечное давление газов в области измерения интенсивного газовыделения; — давление газов в момент времени t.
Под скоростью брутто-процесса подразумевается вся совокупность параллельно и последовательно протекающих элементарных реакций как на поверхности раздела твердая — газообразная фаза, так и в газовой фазе.
Рисунок 1. Зависимость давление (р) — время (t) для валина:
1 — 270°С, 2 — 285°С, 3 — 301°С
На рис. 1 представлена зависимость давления продуктов распада валина от времени. Из рисунка видно, что при низких температурах наблюдается индукционный период (50 мин) и следующий этап — его разложение. При повышении температуры время индукционного периода сокращается и при температуре 301°С — оно совпадает с временем разогрева системы. Кинетические параметры для валина приведены в табл. 1.
Основным продуктом разложения валина в газовой фазе является углекислый газ. В небольшом количестве присутствует вода и аммиак. В жидкой фазе обнаружены 2,5-пиперазиндион-3,6-бис(1-метилэтил), и N-пропиламинизобутилиден.
На рисунках 2 и 3 представлена зависимость давления продуктов разложения лейцина и изолейцина соответственно.
Рисунок 2. Зависимость давление (р) — время (t) для лейцина:
1 — 269°С, 2 — 285°С, 3 — 301°С
Рисунок 3. Зависимость давление (р) — время (t) для изолейцина:
1 — 269°С, 2 — 285°С, 3 — 301°С
Лейцин и изолейцин являются структурными изомерами (изомерия углеродного скелета) с общей формулой С6H13O2N. Характер кривых разложения отличается. У лейцина при нагревании наблюдается сублимация, что не характерно у изолейцина. Однако оба процесса термораспада имеют одинаковый индукционный период (»50 мин) при низких температурах. Из табл. 1 следует, что лейцин распадается примерно в 1,5—2,5 быстрее, чем изолейцин, что вероятно связано с индукционным эффектом заместителя R, а энергетические параметры реакции близки в пределах ошибок эксперимента.
Продукты разложения лейцина и изолейцина одинаковы как в газовой, так и в жидкой фазе. Основной газообразный продукт — это СО2, в жидкой фазе — 2, 5 диперазидион(3,6-бис(2-метилпропил)), бутенилкетон, диметилпиперидин.
При разложении фенилаланина, как видно из рис. 4, не наблюдается индукционного периода при низких температурах, как это было у ранее рассмотренных аминокислот.
Рисунок 4. Зависимость давление (р) — время (t) для фенилаланина
Для фенилаланина газообразный продукт — СО2. В жидкой фазе обнаружены: фенэтиламин N-бензилиден, тетраметилпиперидон, фенэтиамин N-изопропилиден.
Зависимость констант скорости термического разложения аминокислотот температуры в координатах lnk—1/Т представлена на рис. 5. Экспериментальные точки в указанных координатах подтверждают линейный характер указанной зависимости. Значения кажущейся энергии активации и логарифмов предэкспоненциальных множителей в уравнении Аррениуса приведены в табл. 1.
Рисунок 5. Температурная зависимость эффективных констант скорости реакции: 1 — валин, 2 — лейцин, 3 — изолейцин, 4 — фенилаланин
Таблица 1.
Кинетические параметры термического разложения аминокислот
Аминокислота |
Валин |
Лейцин |
Изолейцин |
Фенилаланин |
Интервал Т 0С |
270-301 |
269-301 |
269-301 |
245-275 |
ЕА, кДж/моль |
190±27 |
184±25 |
195±27 |
204±28 |
lnk0 |
32,8 |
31,3 |
33,1 |
39,29 |
Т.пл, 0С [5] |
315 |
337 |
284 |
284 |
m, D [2] |
10,121 |
10,225 |
10,079 |
10,422 |
k(2700С) 105 сек-1 |
9,0 |
8,44 |
3,75 |
317 |
При анализе конденсированной фазы продуктов разложения валина, лейцина и изолейцина найдены соответствующие циклические дипептиды, что подтверждает факт протекания реакции дегидратации. Высокое содержание СО2 в газовой фазе говорит о реализации процесса декарбоксилирования, тем не менее амины были идентифицированы только при разложении двух аминокислот: валина (изобутиламин) и лейцина (пропиламин). Это можно объяснить высокой реакционной способностью аминов при температурах 200—3000С. Отсутствие аммиака в продуктах реакции и наличие альдиминов, таких как N-пропиламинизобутилиден и фенэтиламин N-бензилиден, которые не могут образовываться из аминокислот, свидетельствует о дальнейшем взаимодействии между собой продуктов реакции, в наших условиях. Для фенилаланина не найдено соответствующих циклических дипептидов, что можно объяснить стерическим фактором. В результате исследования кинетических закономерностей и продуктов превращения алифатических аминокислот установлено, что в интервале температур 200—2300С образуются некоторые токсичные продукты распада, например, амиды и N-алкиламиды.
Показано, что изученные аминокислоты разлагаются при температурах ниже температуры разложения, указанных в литературе. Установление зависимости термической стабильности от энергии активации будет не верной, поскольку ЕА у исследуемых аминокислот близка (в пределах ошибки). При сравнении констант скорости (табл. 1) при одной температуре (2700С) можно установить последовательность уменьшения константы скорости (увеличение стабильности): Ph>Val=Leu>ile. Так как различие энергии активации у Val и Leu не велико, константы скорости близки. При этом они отличаются от констант скорости других аминокислот. Близкие значения ЕА для Val и ile предполагают и близкие значения констант скорости, однако константы скорости отличаются почти в 2,5 раза. Самое большое значение константы скорости наблюдается у Ph — это ароматическая аминокислота, вероятно вклад в стабильность вносит бензольное кольцо. Все эти закономерности можно объяснить индуктивным влиянием радикала у этих аминокислот. Вывод о стабильности соединений в изученном ряду, в данном случае, подтверждает и сопоставления дипольного момента этих аминокислот Ph>Leu>Val>ile.
Список литературы:
1.Артеменко А.И. Органическая химия. М: ВШ, 2003. 605 с.
2.Кондратьев М.С., Самченко А.А., Комаров В.М. и др. Некоторые аспекты структуры и конформационной лабильности природных L-аминокислот и модельных олигопептидов // Труды Междун. Конф. МКО. Пущино. 2005. Т. 3. С. 899.
3.Селифанова Е.И., Чернова Р.К., Коблова О.Е. Термогравиметрическое изучение L-аминокислот // Изв. Саратовского университета 2008. Т. 8. вып.2. Сер. Химия. Биология. Экология.
4.Яблоков В.А, Смельцова И.Л., Зеляев И.А., Митрофанова С.В. Исследование термической стабильности глицина, аланина и серина // ЖОХ. 2009. Т. 79. Вып. 8. С. 1344.
5.Якубке Х.-Д., Ешкайт Х. Аминокислоты. Пептиды. Белки. М.: Мир. 1985.382 с.
дипломов
Оставить комментарий