Статья опубликована в рамках: XLVII Международной научно-практической конференции «Инновации в науке» (Россия, г. Новосибирск, 29 июля 2015 г.)
Наука: Технические науки
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
дипломов
Статья опубликована в рамках:
Выходные данные сборника:
Упырев Владимир Владимирович
инженер лаборатории «НМиНКБС_СВЧ_ЭиМ»,
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики,
РФ, г. Санкт-Петербург,
Е- mail: upyrevvv@ya.ru
OBLIQUE COMPRESSION SHOCK WAVE AND SHOCK WAVE POLARS
Vladimir Upyrev
Engineer of laboratory «NMiNKBS_SVCh_JeiM»,
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics,
Russia , Saint-Petersburg,
АННОТАЦИЯ
Рассматривается история изучения условий динамической совместности на косом скачке уплотнения, определяющих соотношение значений газодинамических переменных до разрыва и сразу за ним. Приведена математическая модель косого скачка уплотнения. Вводится понятие ударной поляры. Выполнено исследование свойств ударных поляр. Уделено внимание особым точкам на ударных полярах и их значению для исследования свойств скачков и их интерференции. Исследования выполнены при финансовой поддержке Министерства образования и науки РФ (Соглашение № 14.575.21.0057).
ABSTRACT
In this work we review history of research on conditions of dynamic compatibility conditions on the oblique shock wave defining value relation of gas-dynamic variable before and right after discontinuity. Mathematical model for an oblique shock wave is presented. A shock waves polar term was introduced. Conducted research of shock wave polar’s properties. Attention to special points on shock wave polars and their value for research of shock wave properties and interference is paid. The researches are executed with the financial support of the Ministry of Education and Science of the Russian Federation (the Agreement № 14.575.21.0057).
Ключевые слова : косой скачок уплотнения; газодинамический разрыв; условия динамической совместности; ударная поляра
Keywords : obliques compression shock wave; gaz-dynamic discontinuity; gaz-dynamic compatibility conditions; shock wave polar.
ВВЕДЕНИЕ
Цель — привести основные соотношения на косом скачке уплотнения в универсальной форме, которую можно применять и для случая изоэнтропических волн, исследовать свойства зависимостей газодинамических переменных за скачком от параметров течения перед ним, продемонстрировать графический метод решения задач об интерференции газодинамических разрывов, привести для этих задач необходимый графический материал. Основные понятия о газодинамическом разрыве и, в частности, о косом скачке уплотнения приведены в работах [16], [30].
Несмотря на повсеместное распространение вычислительных методов газовой динамики в ряде приложений актуальной является задача непосредственного расчета скачков уплотнения, особенно, если нужно найти оптимальное решение.
В многочисленной имеющейся литературе на эту тему методики расчета скачков, как правило, приведены в форме, затрудняющей их применение в задачах оптимизации и управления сверхзвуковыми течениями.
Положение осложняется тем, что уравнения, связанные с расчетом скачков, часто имеют несколько решений, вычислительные особенности или, вообще, явно не разрешены относительно искомой переменной. Для отбора решений, которые соответствуют физически реализуемым ударно-волновым конфигурациям, получения значений в окрестности особых точек необходимо привлекать дополнительные соображения.
С другой стороны, существует минимальный набор важнейших характеристик скачков, для которых возможна постановка задачи расчета в удобной форме. Знание особых и предельных параметров скачков позволяет легко разделять решения на классы.
В настоящей работе изложен именно такой подход, позволяющий просто и без затруднений решить 90 % практически значимых задач, связанных с расчетом одиночных косых скачков уплотнения.
Подробный анализ газодинамических волн (изоэнтропических волн разрежения и сжатия) и косых скачков уплотнения, возникающих в плоских стационарных течениях невязкого нетеплопроводного совершенного газа, был опубликован в 1908 году Т. Майером [23]. В этой же работе определены параметры косого скачка уплотнения, образующегося при обтекании плоского острого угла. Буземан в ряде работ в 1929—1937 годах [5], [17], [18] заложил основу графических методов решения задач об интерференции газодинамических разрывов с помощью ударных поляр, связывающих интенсивность косых скачков уплотнения с углом разворота потока на скачке. Ударные поляры именно с того времени называются в его честь полярами Буземана. За характерный вид их еще называют сердцевидными кривыми. Еще одно название — изомахи, т. к. каждая ударная поляра строится при конкретном числе Маха набегающего потока. Методы решения задач интерференции разрывов с помощью ударных поляр были развиты Курантом в работе [20].
Задачи проектирования сверхзвуковых летательных аппаратов вызвали в 40-е годы исследования скачков уплотнения, взаимодействий между собой отдельных волн и разрывов. В первых экспериментах с помощью ударной трубы были изучены одномерные взаимодействия. Теория течения газа в ударной трубе в одномерной постановке предложена Шардиным в 1932 году [26]. В Университете Торонто в 50-е годы был проведен ряд экспериментальных и теоретических работ по исследованию взаимодействия одномерных бегущих волн и разрывов:
рефракция бегущей ударной волны на контактном разрыве — Битондо и другие [15], Битондо [14], Форд и Гласс [21];
взаимодействие догоняющих ударных волн — Гоулд [22];
ударной волны с волной разрежения — Гоулд [22], Ничолл [25] и рефракция волны разрежения — Биллингтон и Гласс [13], Биллингтон [12].
Теоретические результаты в эти годы были скромнее. В работе Тауба [28] исследовано распространение ударной волны по двум первоначально покоящимся газам, разделенным поверхностью раздела (контактным разрывом). В 1960 году Молдер [24] разработал аналитическую теорию регулярного взаимодействия встречных ударных волн. Двух и трехмерные задачи долгое время решались исключительно численными методами.
Большой вклад в разработку теории стационарных газодинамических разрывов внес В.Н. Усков. В современном виде её основные положения были сформулированы в 1980 г. в учебном пособии [8]. В сборнике [7] были приведены условия динамической совместности для основных задач об интерференции разрывов. Результаты анализа соотношений на скачке и свойств различных ударно-волновых структур приведены в монографии [9].
В дальнейшем они были развиты на случай одномерных бегущих волн, а также косых ударных волн [10]. В этих работах приведены удобные формулы для расчета параметров косых скачков уплотнения и косых ударных волн. Проведенное В.Н. Усковым исследование сердцевидных кривых позволило установить их важные свойства: наличие огибающей, предельных углов отклонения потока на разрыве, точек, соответствующих разрывам, числа Маха за которыми равны единице. Можно отметить, что наличие огибающей важно в задачах сверхзвуковой аэродинамики летательных аппаратов [11], т. к. соответствует экстремумам давления на сторонах тела, летящего с заданным углом атаки, но с переменной скоростью.
Общность математического аппарата одномерных нестационарных и двумерных стационарных задач о взаимодействии волн и разрывов, продемонстрированная в работах В.Н. Ускова и Л.П. Архиповой [32], [2], позволила М.Г. Чернышову решить ряд практически важных задач [1], [29], [31], [4] о взаимодействии косого скачка с волной Прандтля-Майера. Следующим шагом стало исследование взаимодействия ударной волны и прямого скачка уплотнения [27], а также косых ударных волн [3] и нестационарных тройных конфигураций [6].
1. Косой скачок уплотнения — математическая модель
Моделью ударных волн является поверхность математического разрыва первого рода, при переходе через которую газодинамические переменные терпят разрыв [f]=f2-f1. Ударная волна в общем случае может перемещаться в пространстве. Неподвижная ударная волна называется стоячей волной или скачком уплотнения. Скачок, расположенный под углом к набегающему потоку, называется косым. Соотношения переменных f2 и f1 по разные стороны газодинамических разрывов получили название условий динамической совместимости (УДС) на скачке.
Угол наклона скачка σ, его интенсивность J, под которой обычно понимают отношение давления за скачком P2 к давлению перед скачком P1, и угол отклонения потока на скачке β (рисунок 1a) при заданных параметрах течения перед скачком (M1, P1, P01, ρ) уплотнения взаимно однозначно связаны между собой. Задание любого из этих трех параметров позволяет вычислить два других. Если известен, например, угол разворота потока β, как на рисунке 1b, когда он равен углу клина, на который натекает сверхзвуковой поток, то можно найти интенсивность и угол наклона образующегося косого скачка. Если известна интенсивность J, например, как в перерасширенной струе, когда она равняется отношению давлений в окружающей среде к давлению на срезе сверхзвукового сопла (точка А, рисунок 1c), то можно найти угол наклона скачка и угол разворота потока (границы струи) на скачке. В задачах, когда скачок является результатом интерференции других разрывов, чаще всего известен его угол наклона, по которому можно вычислить интенсивность и угол разворота потока.
Рисунок 1. Определение косого скачка уплотнения индексы: 1 — параметры до скачка, 2 — параметры за скачком, M — число Маха, P — давление, P0 — полное давление, β — угол разворота потока, σ — угол наклона скачка уплотнения.
Параметры скачка уплотнения зависят от теплофизических свойств газа, которые выражаются показателем адиабаты γ = cp/cv (cp — удельная теплоемкость газа в термодинамических процессах, происходящих при постоянном давлении, cv- удельная теплоемкость газа в термодинамических процессах, происходящих при постоянном объеме), а также его молекулярным весом. Показатель адиабаты в идеальном газе зависит от числа степеней свободы атома γ=(j+2)/j. Если газ одноатомный, то степеней свободы у него 3, и показатель адиабаты равен 5/3 или 1,666... Если газ двухатомный, то степеней свободы у него 5, и показатель адиабаты равен 7/5 или 1,4. Если газ трехатомный, то степеней свободы у него 6, и показатель адиабаты равен 8/6 или 1,333… Кроме того, обычно выделяют: γ=1.1 для смеси углеводородного топлива с воздухом, γ=1.2 - для смеси углеводородного топлива с кислородом, γ=1.25 - для продуктов сгорания. В реальном газе γ зависит от давления и температуры, но этим можно пренебречь при t<600Κ.
УДС на стационарных разрывах представляют собой равенство нулю скачка следующих газодинамических параметров [f]=f2-f1:
потока вещества
, (1)
импульса движения в проекции на нормаль к поверхности скачка
(2)
импульса движения в проекции на касательную к поверхности скачка
, (3)
Энергии
, (4)
где и проекции вектора скорости на плоскость разрыва, i — энтальпия. Давление P, температура T и плотность связаны уравнением состояния Менделеева-Клайперона
, (5)
которое для идеального газа (молекулярный вес и показатель адиабаты постоянны, энтальпия i пропорциональна температуре T) может быть переписано в виде:
. (6)
Степень сжатия потока в ударно-волновом процессе принято характеризовать отношением плотностей E=ρ1/ρ2, которые в отсутствие внешнего подвода тепла называются адиабатой. Если Ε>1, то имеет место расширение потока, если <1, то сжатие. В изоэнтропическом процессе Ε определяется адиабатой Лапласса-Пуассона (изоэнтропа)
. (7)
На скачке уплотнения с помощью (6) и системы (2,3) уравнение энергии (4) можно записать в виде уравнения ударной адиабаты Рэнкина-Гюгонио
. (8)
Скачков разрежения не бывает, т. е. на скачке всегда Ε<1. Часто в соотношениях вместо γ используется величина
, (9)
которая представляет собой предел E при J→∞. Видно, что на скачке он конечен, т. е. плотность не может возрастать бесконечно. Адиабата Рэнкина-Гюгонио может быть записана в виде зависимости от интенсивности скачка
. (10)
Введем число Маха M=v/a, где a – местная скорость звука:
. (11)
Тогда после несложных преобразований из уравнений (1—4), с учетом (10,11) можно получить выражение для интенсивности косого скачка уплотнения
, (12)
а также связь между углами поворота потока β и наклона скачка σ
. (13)
Уравнения (12—13) определяют при заданном М ударную поляру lnJ-β, (рисунок 2) в параметрической форме с параметром σ, который может меняться в пределах от угла Маха α=arcsin (1/M) до 90°. Видно, что для каждого числа Маха имеется максимальная интенсивность
, (14)
с использованием которой угол β можно выразить следующим образом
. (15)
Если скачок задан интенсивностью J, то для вычисления угла β удобнее использовать (15), если углом разворота σ, то — (13).
Рисунок 2. Ударная поляра при γ=1.4, число Маха изменяется от 2 до 5 с шагом 0.2
Если скачок задан углом разворота потока β, то удобнее решать уравнения (13), (15) численно, хотя существует кубическое уравнение относительно J, явно связывающее J-β. Для каждого β получается два решения для скачков: со сверхзвуковым течением за ним и с дозвуковым. Отношение переменных на скачке можно записать только с помощью интенсивности J и обобщенной адиабаты E
, (16)
отношение температур
, (17)
отношение скоростей звука
, (18)
коэффициент восстановления полного давления
, (19)
отношение плотностей
. (20)
Записанные в таком виде соотношения справедливы для любых типов волн: простых, ударных и детонационных. Если вместо E в соотношения (16)—(20) подставить уравнения адиабаты Лапласа-Пуассона (7), то получим соотношения для простых и центрированных изоэнтропических волн. Если подставить адиабату Рэнкина-Гюгонио (10), то получим уравнения для ударных волн. Все переменные за скачком в уравнениях (16—20) монотонно изменяются в зависимости от интенсивности скачка J.
2. Результаты анализа ударных поляр
На рисунках 2—5 представлены ударные поляры для разных γ, при М=2-5. Меньшая поляра соответствует меньшему числу Маха.
Рисунок 3. Ударная поляра при γ=1.1, число Маха изменяется от 2 до 5 с шагом 0.2
Рисунок 4. Ударная поляра при γ=1.25, число Маха изменяется от 2 до 5 с шагом 0.2
Рисунок 5. Ударная поляра при γ=1.67, число Маха изменяется от 2 до 5 с шагом 0.2
Часто возникает практически значимая задача затормозить поток до скорости меньше скорости звука, поэтому полезно уметь по заданному числу М набегающего потока вычислять интенсивность скачка, за которым М=1
. (21)
Актуальной является и обратная задача — вычисление по заданной интенсивности скачка числа Маха набегающего потока, при котором течение за скачком становится звуковым
. (22)
Если течение за присоединенным к клину скачком дозвуковое, то размеры клина влияют на течение у его вершины.
Для каждого М и γ существует предельный угол β, на который косой скачок способен отклонить поток. Следовательно, картина течения, изображенная на рисунке 1b возможна только при небольших углах клина β. Если же он превышает некоторое предельное для данного М значение, которое принято обозначать βl, то образуется отошедший криволинейный скачок уплотнения (рис. 6).
Рисунок 6. Картина течения при угле клина, большем β
Интенсивность скачка, способного развернуть поток на максимально возможный угол βl, выражается соотношением
. (23)
Подставляя (23) в (15), получим значение предельного угла разворота потока. Соответственно, можно построить предельную поляру Jl-βl (рисунок 7).
a)
b)
Рисунок 7. Зависимости для предельного угла отклонения потока Jl-βl и огибающей семейства поляр Je-βe
Точка на сердцевидной кривой, соответствующая Jl, делит поляру на две части. Часть кривой, лежащая ниже этой точки, соответствует присоединенным скачкам, часть, лежащая выше, отошедшим.
Предельный угол отклонения βl растет с увеличением М и при равняется 48.58º для γ=1.4 (рисунок 8).
Рисунок 8 Зависимости для предельного угла отклонения потока Jl от числа Маха
Угол же наклона скачка σl, при котором достигается предельный угол отклонения потока βl , зависит от числа Маха немонотонно.
Через произвольную точку координатной плоскости {J;β} могу проходить две ударные поляры, соответствующие разным числам Маха, что определяет наличие огибающих ударных поляр ограничивающих на плоскости {J;β} область, занимаемую ударными полярами при 1<M<∞. В параметрическом виде уравнение огибающих имеет вид
, (24)
. (25)
Так как на скачках уплотнения J>1, то из (24) следует, что ударные поляры при M<21/2 не имеют огибающей. Угол поворота потока на скачке с интенсивностью Je максимален по сравнению со всеми скачками той же интенсивности, возникающими в потоке с другими числами Маха. Огибающая показана на рисунке 7.
На любой поляре можно выделить особые точки e, s, l, причем всегда выполняется неравенство Je<Js<Jl.
Используя приведенные выше графики, можно решать графически задачи об интерференции газодинамических разрывов. Продемонстрируем это на примере пересечения двух скачков уплотнения одного направления (рисунок 9).
Рисунок 9. Пересечение двух скачков ( s1 и s2) одного направления с образованием третьего результирующего скачка s3
Этому случаю на плоскости ударных поляр соответствует пересечение двух ударных поляр (рисунок 10). На основной поляре, соответствующей числу Маха М, отмечается точка с координатами Λ1-β1. Из этой точки выпускается вторая ударная поляра, построенная по числу Маха за скачком s1. Поляры пересекаются в точке 1—3, координаты которой определяют интенсивности Λ2, Λ3 и углы разворота потока β2, β3 для скачков s2, s3.
Рисунок 10. Решение на плоскости поляр задачи об интерференции двух скачков уплотнения одного направления
ЗАКЛЮЧЕНИЕ
Приведены универсальные формулы для расчета параметров за скачком, записанные с помощью обобщенной адиабаты, применимые также для простых волн и детонационных волн (при использовании соответствующих выражений для адиабаты). Эти формулы позволяют вычислить параметры скачка, если известно значение хотя бы одной газодинамической переменной за ним.
Если известны параметры потока перед скачком и интенсивность скачка, то данные уравнения позволяют вычислить все параметры за скачком. Результаты расчетов зависимости важнейших характеристик скачков от числа Маха и показателя адиабаты потока приведены в удобной для непосредственного использования форме. Рассматривая точки пересечения поляр, построенных при разных числах Маха, можно находить параметры скачков в соответствующих ударно-волновых структурах
Список литературы:
- Архипова Л.П., Усков В. Н. 2012. “Отражение Центрированной Волны Разрежения Римана Со Сверхзвуковым Задним Фронтом От Твердой И Гладкой Стенки.” Вестник СПбГУ. Серия 1 (Вып. 4): — С. 62—67.
- Архипова Л.П., Усков В. Н. 2013. “Универсальное Решение Задачи Об Отражении Одномерных Бегущих Волн От Твердой Поверхности И Их Анализ Для Волн Уплотнения.” Вестник СПбГУ. Серия 1 (Вып. 2): — С. 77—81.
- Усков В.Н., Карасев К. А. 2003. “Критериальные Интенсивности При Интерференции Прямого Скачка Уплотнения И Встречной Ударной Волны.” Сб. “Наука и технологии”. — С. 4—11.
- Усков В.Н., Мешков В.Р., Омельченко А. В. 2002. “Взаимодействие Скачка Уплотнения Со Встречной Волной Разрежения.” Вестник СпбГУ. Сер. 1 (Вып. 2).
- Усков В.Н., Мостовых П. С. 2008. “Тройные Конфигурации Бегущих Ударных Волн В Потоках Невязкого Газа.” ПМТФ. Т. 49(№ 3): — С. 3—10.
- Усков В.Н., Омельченко А. В. 2002. “Интерференция Нестационарных Косых Ударных Волн.” Письма в ЖТФ. Т. 28 (№ 12): — С. 5—12.
- Усков В.Н. Интерференция стационарных газодинамических разрывов/ “Сверхзвуковые Газовые Струи”. - Новосибирск: ИТПМ, 1983. — С. 22—46.
- Усков В.Н. Ударные волны и их взаимодействие. - Л.: ЛМИ, 1980. — 88 с.
- Усков В.Н., Адрианов А.Л., Старых А.Л. Интерференция стационарных газодинамических разрывов. Новосибириск: ВО “Наука”. Сибирская Издательская Фирма. 1995. — С. 180.
- Усков В.Н., Тао Ган, Омельченко А.В. О Поведении Газодинамических Переменных За Косой Ударной Волной/ Сб. статей// Под. ред. В.Н. Ускова. 2002. — С. 179—191.
- Усков В.Н., Чернышов М.В. Экстремальные ударно-волновые системы в задачах внешней аэродинамики // Теплофизика и аэромеханика. — Т. 21. — 2014. — № 1. — C. 15—31.
- Billington I.I. (1955) An Experimental Study of One–Dimensional Refraction of a Rarefaction Wave at a Contact Surface. University of Toronto Institute for Aerospace Studies (UTIAS) Report № 32.
- Billington I.I., Glass I.I. (1955) On the One–Dimensional Refraction of a Rarefaction Wave at a Contact Surface. University of Toronto Institute of Aerophysics (UTIA) Report № 31.
- Bitondo D. (1950) Experiments on the Amplification of a Plane Shock Wave. University of Toronto Institute of Aerophysics (UTIA) Report № 7.
- Bitondo D., Glass I.I., Patterson G.N. (1950) One Dimensional Theory of Absorption and Amplification of a Plane Shock Wave by a Gaseous Layer. University of Toronto Institute of Aerophysics (UTIA) Report № 5.
- Bulat P.V., Uskov V.N., 2014. Shock and detonation wave in terms of view of the theory of interaction gasdynamic discontinuities. Life Science Journal, 11(8s): 307-310.
- Busemann A. Gasdynamik, Handbuch der ex- perimentellen Physik [Text] / A. Busemann. – Leipzig: Akademischer Verlag, — 1931. — Vol. IV, — Part. 1. — 394 s.
- Busemann A. Hodographenmethode der Gas- dynamik [Text] / A. Busemann // ZAMM. — 1937. — Vol. 17, — Issue 2. — P. 73—79.
- Busemann A. Verdichtungsstӧße in ebenen Gasstrӧmungen. Vorträge aus dem Gebiet der Aerody- namik, Aachen 1929 [Text] / A. Busemann; heraus- gegeben von A. Gilles, L. Hopf und Th. von Kàrmàn. – Berlin: Julius Springer, 1930. — S. 162—169.
- Courant R., Friedrichs K.O. (1948) Supersonic flow and shock waves. New York.
- Ford C.A., Glass I.I. (1956) An Experimental Study of One–Dimensional Shock Wave Refraction. J. Aero. Sci. — Vol. 23, — № 2, — pp. 189—191.
- Gould D.G. (1952) The Head–On Collision of Two Shock Waves and a Shock and Rarefaction Wave in One–Dimensional Flow. University of Toronto Institute of Aerophysics (UTIA) Report № 17.
- Meyer Th. (1908) Ueber zweidimensionale Bewegungsvorg ̈ange in einem Gas, dasmit Ueberschallgeschwindigkeit str ̈omt // Forschungsheft des Vereins deut- cher Ingenieure, Bd. 62, — S. 31—67.
- Molder S. (1960) Head–on interaction of oblique shock waves. University of Toronto Institute for Aerospace Studies (UTIAS) Technical Note № 38. September.
- Nicholl C.I.H.(1951) The Head–On Collision of Shock and Rare-factionWaves. University of Toronto Institute of Aerophysics (UTIA) Report № 10.
- Schardin H. (1932) Physik. Zeits. 33, 60.
- Silnikov M.V., Chernyshov M.V., Uskov V.N. Analytical solutions for Prandtl-Meyer wave — oblique shock overtaking interaction // Acta Astronautica. — 2014. — Vol. 99. — Pp. 175—183.
- Taub A.H. (1947) Refraction of Plane Shock Waves. Physical Review. Vol. 72. № 1. July 1.
- Uskov V., Chernyshov M. 2013. “The Interaction of Prandtl-Meyer Wave with the Oblique Shock of the Same Direction.” Journal of Energy and Power Engineering. Vol. 4(№ 6): — P. 21.
- Uskov V.N., Bulat P.V., Arkhipova L.P. Gas-dynamic Discontinuity Conception. Research Journal of Applied Sciences, Engineering and Technology, — 2014, — Vol. 8, (22). — p. 2255—2259.
- Uskov V.N., Chernyshov M. V. 2010. “Analytical Solutions for Overtaking Prandtl-Meyer Wave — Oblique Shock.” 19th International Shock Interaction Symposium. — P. 4.
- Uskov V.N., Chernyshov, M.V. Extreme shockwave systems in problems of external supersonic aerodynamics // Thermophysics and Aeromechanics. — Vol. 21. — 2014. — № 1. — p. 15—30.
дипломов
Оставить комментарий