Поздравляем с Новым Годом!
   
Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: LXI Международной научно-практической конференции «Инновации в науке» (Россия, г. Новосибирск, 29 сентября 2016 г.)

Наука: Информационные технологии

Скачать книгу(-и): Сборник статей конференции

Библиографическое описание:
Коноваленко С.А., Королев И.Д. ВЫЯВЛЕНИЕ УЯЗВИМОСТЕЙ ИНФОРМАЦИОННЫХ СИСТЕМ // Инновации в науке: сб. ст. по матер. LXI междунар. науч.-практ. конф. № 9(58). – Новосибирск: СибАК, 2016. – С. 12-20.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

ВЫЯВЛЕНИЕ УЯЗВИМОСТЕЙ ИНФОРМАЦИОННЫХ СИСТЕМ

Коноваленко Сергей Александрович

адъюнкт Краснодарского высшего военного училища,

РФ, г. Краснодар

Королев Игорь Дмитриевич

д-р техн. наук, проф., проф. кафедры защищенных информационных технологий

Краснодарского высшего военного училища,

РФ, г. Краснодар

IDENTIFICATION OF INFORMATION SYSTEMS VULNERABILITIES

Sergei Konovalenko

postgraduate of Krasnodar higher military school,

Russia, Krasnodar

Igor Korolev

doctor of Engineering, Professor, Professor of the department of protected information technologies, Krasnodar higher military school,

Russia, Krasnodar

 

АННОТАЦИЯ

Проведена оценка существующих средств анализа защищенности информационных систем, на основе которой построены модели выявления, идентификации и оценки образов уязвимостей информационных систем. Определены основные характеристики (элементы), присущие образам существующих уязвимостей информационных систем.

ABSTRACT

An assessment of existing tools for analyzing information systems security was performed. On the basis of the achieved results the models of detection, identification and evaluation of information systems vulnerabilities images were built. The main characteristics (elements) inherent to the images of the existing information systems vulnerabilities were defined.

 

Ключевые слова: выявление; информационная система; идентификация; оценка; описание образа; уязвимость.

Keywords: detection; information system; identification; evaluation; description of the image; vulnerability.

 

Любой информационной системе (далее по тексту – ИС) присущи определенные уязвимости, перечень которых является достаточно объемным и постоянно подлежит обновлению (расширению). Уязвимости ИС обусловлены недостатками (ошибками), возникающими в процессе «жизненного цикла» этой системы. В этом виду, возможность реализации угроз безопасности ИС напрямую зависит от действий злоумышленника по обнаружению и использованию присущих ей уязвимостей. С другой стороны, процесс выявления уязвимостей ИС, проводимый специалистом, является основополагающим в противодействии злоумышленнику на ранних стадиях реализации атак.

Целью данной статьи является построение обобщенных моделей выявления, идентификации и оценки образов уязвимостей ИС, а также определение характеристик (элементов), присущих образам существующих уязвимостей, что позволит специалисту более качественно систематизировать свою работу в области обеспечения безопасности контролируемой ИС.

Согласно ГОСТ Р 56545-2015, «уязвимость» – это недостаток (слабость) программного (программно-технического) средства или ИС в целом, который (которая) может быть использована для реализации угроз безопасности информации [3]. «Информационная система» – это совокупность содержащейся в базах данных (далее по тексту – БД) информации и обеспечивающих ее обработку информационных технологий и технических средств [3].

Любую уязвимость ИС можно представить в виде образа, который включает в себя набор определенных характеристик (элементов, описывающих данную уязвимость), формируемых по определенным правилам.

Описание уязвимости ИС – это информация о выявленной (обнаруженной) уязвимости [3]. Правила описания уязвимости ИС – это совокупность положений, регламентирующих структуру и содержание описания уязвимости [3].

Согласно [3] образы уязвимостей подразделяются на образы известных уязвимостей, образы уязвимостей нулевого дня и образы впервые выявленных уязвимостей. Известная уязвимость – это уязвимость, опубликованная в общедоступных источниках с описанием соответствующих мер защиты информации, исправлений недостатков и соответствующих обновлений [3]. Уязвимость нулевого дня – это уязвимость, которая становится известной до момента выпуска разработчиком компонента ИС соответствующих мер защиты информации, исправлений недостатков или соответствующих обновлений [3]. Впервые выявленная уязвимость – это уязвимость, неопубликованная в общедоступных источниках [3].

Каждому типу образов уязвимостей ИС присущи как общие, так и специфические характеристики (элементы), которые можно свести в таблицу. Пример таблицы представлен ниже.

Таблица 1.

Элементы различных типов образов уязвимостей ИС

№ п/п

Характеристики образа уязвимости

Элемент, присущий образу известной уязвимости

Элемент, присущий образу уязвимости нулевого дня

Элемент, присущий образу впервые выявленной уязвимости

1.

Место обнаружения (выявления) уязвимости в ИС.

+

+

+

2.

Способ обнаружения (выявления) уязвимости.

+

+

+

3.

Наименование уязвимости.

+

+

-

n

Рекомендации по устранению уязвимости или по исключению возможности ее использования.

+

-

-

 

 

Прежде чем перейти к моделям выявления, идентификации и оценки образов уязвимостей, необходимо пояснить, что ИС состоит из уровней [6]:

  • уровень прикладного программного обеспечения (далее по тексту – ПО), отвечающий за взаимодействие с пользователем;
  • уровень системы управления базами данных (далее по тексту – СУБД), отвечающий за хранение и обработку данных ИС;
  • уровень операционной системы (далее по тексту – ОС), отвечающий за обслуживание СУБД и прикладного ПО;
  • сетевой уровень, отвечающий за взаимодействие узлов ИС.

Каждому из уровней ИС соотносят различные типы (классы) уязвимостей. Для выявления уязвимостей необходимо разрабатывать модели выявления, идентификации и оценки уязвимости.

Основными источниками возникновения уязвимостей ИС являются [4; 6]:

  • ошибки при разработке (проектировании) ИС (например, ошибки в ПО);
  • ошибки при реализации ИС (ошибки администратора ИС) (например, неправильная настройка или конфигурация ПО, не эффективная концепция политики безопасности и т. п.);
  • ошибки при использовании ИС (пользовательские ошибки) (например, слабые пароли, нарушение в политике безопасности и т. п.).

Для выявления, идентификации и оценки уязвимостей ИС, а также формирования отчетов и устранения (нейтрализации) уязвимостей, используются средства анализа защищенности сети (далее по тексту – САЗ) (сканеры безопасности (далее по тексту – СБ)), которые можно разделить на два типа [1]:

  • сетевые САЗ (СБ) (осуществляют удаленный анализ состояний контролируемых хостов на сетевом уровне);
  • САЗ (СБ) уровня ОС (осуществляют локальный анализ состояний контролируемых хостов, порой требуется установка специального агента на контролируемых хостах).

Актуальность применения САЗ (СБ) обусловлена тем, что специалист способен заблаговременно определить достаточно большой перечень типов (классов) уязвимостей, присущих контролируемой ИС, и предпринять необходимые меры (в отдельных случаях, попытаться предпринять) по их устранению или исключению (минимизации) возможности использования обнаруженных уязвимостей злоумышленником.

Для систематизации работы специалиста в области обеспечения безопасности, контролируемой ИС и на основе проведенного анализа [2; 5; 7; 8; 9; 10] строится обобщенная модель выявления образов уязвимостей ИС (рисунок 1).

Рисунок 1. Обобщенная модель выявления образов уязвимостей ИС

 

Процесс выявления уязвимостей ИС строится посредствам выполнения пассивных проверок (сканирование – scan) и активных проверок (зондирование – probe) наличия уязвимостей контролируемой ИС.

В процессе сканирования САЗ, отправляя соответствующие запросы в адрес контролируемой ИС (на порты контролируемого хоста), анализирует обратно возвращаемые баннеры (заголовки пакетов данных) и делает соответствующие выводы о типе ИС и наличии потенциальных (возможных) ее уязвимостей. Результат сканирования не всегда на сто процентов говорит о наличии возможных (типовых) уязвимостей ИС, так как текстовое содержание баннера могло быть специально модифицировано, либо известные уязвимости, присущие данной ИС, были устранены специалистом в процессе ее реализации (использования). Еще одним способом выполнения сканирующих действий являются активные зондирующие проверки, которые предоставляют возможность проанализировать возвращаемый цифровой слепок (fingerprint) фрагмента ПО контролируемой ИС (т. е. выполнить процесс сравнения полученного результата с цифровым слепком известной уязвимости данного типа ИС). Данный способ обеспечивает более надежную и точную процедуру выявления возможных (типовых) уязвимостей контролируемой ИС.

В процессе зондирования САЗ имитирует выполнение атаки на контролируемую ИС, используя образ возможной (типовой) уязвимости, полученной при сканировании. Результат процесса зондирования является самой точной и надежной информацией о наличии уязвимостей контролируемой ИС. Данный способ применяется не всегда, так как существует вероятность нарушения работоспособности (вывода из строя) контролируемой ИС. Решение на применение вышеуказанного способа принимает администратор сети в случаях не эффективного выполнения или необходимости подтверждения результатов сканирования и активных зондирующих проверок.

Результаты сканирования и зондирования поступают в БД уязвимостей, в которой хранятся образы уязвимостей контролируемой ИС. На основании процедуры сравнения образа обнаруженной уязвимости с образами уязвимостей контролируемой ИС САЗ формирует отчет об отсутствии или наличии совпадений в образах уязвимостей (обнаружение уязвимостей), который сохраняется в БД уязвимостей.

Детализирует обобщенную модель выявления образов уязвимостей обобщенная модель идентификации и оценки образов уязвимостей ИС (рисунок 2).

 

Рисунок 2. Обобщенная модель идентификации и оценки образов уязвимостей ИС

 

Процесс идентификации образа обнаруженной уязвимости ИС, который имеет специфические характеристики (элементы), осуществляется посредствам процедуры его сравнения с образами известных уязвимостей и уязвимостей нулевого дня, хранящихся в БД уязвимостей. Формализованное описание известных уязвимостей и уязвимостей нулевого дня оформляется в виде паспортов, которые содержат информацию о специфических характеристиках (элементах) конкретной уязвимости. Для точной идентификации образа обнаруженной уязвимости он должен содержать информацию о наименовании и версии ПО ИС, в которой обнаружена уязвимость, о идентификаторе, наименовании и классе обнаруженной уязвимости. На основании вышеуказанной информации САЗ соотносит образ обнаруженной уязвимости к одному из типов образов уязвимостей. Для качественного проведения оценки идентифицированный образ уязвимости, в свою очередь, должен содержать информацию об идентификаторе и типе недостатка ИС, при котором обнаружена уязвимость, о месте обнаружения уязвимости в ИС, о способе выявления уязвимости. Процесс оценки образа уязвимости оканчивается выработкой рекомендаций по устранению уязвимости или по исключению возможности ее использования. В случаях, если был обнаружен образ впервые выявленной уязвимости, то САЗ помещает информацию о нем в БД уязвимостей с формированием нового паспорта уязвимости нулевого дня. При выпуске разработчиком ИС мер защиты информации, необходимых обновлений и при исправлении недостатков, уязвимость нулевого дня переходит в статус известной уязвимости.

Поводя итоги данной статьи, отмечаем, что специалист по обеспечению безопасности ИС обязан постоянно проводить работу по выявления уязвимостей в системе, четко представлять и понимать процессы, протекающие в САЗ, следить за обновлением (расширением) БД уязвимостей, своевременно устранять недостатки в системе, устанавливать соответствующие меры защиты и обновления на контролируемую ИС.

 

Список литературы:

  1. Астахов А.С. Анализ защищенности корпоративных автоматизированных сетей // Информационный бюллетень Jet Info. – 2002. – № 7 (110). / – [Электронный ресурс]. – Режим доступа: URL: http://www.jetinfo.ru (Дата обращения: 15.09.2016).
  2. Горбатов В.С., Мещеряков А.А. Сравнительный анализ средств контроля защищенности вычислительной сети // Безопасность информационных технологий. – 2013. – № 1. / – [Электронный ресурс]. – Режим доступа: URL: http://www.bit.mephi.ru (Дата обращения: 14.09.2016).
  3. ГОСТ Р 56545-2015 «Защита информации. Уязвимости информационных систем. Правила описания уязвимостей». – М.: Стандартинформ, 2015.
  4. ГОСТ Р 56546-2015 «Защита информации. Уязвимости информационных систем. Классификация уязвимостей информационных систем». – М.: Стандартинформ, 2015.
  5. Лукацкий А.В. Как работает сканер безопасности? / – [Электронный ресурс]. – Режим доступа: http://www.citforum.ru/security/internet/scaner.shtml (Дата обращения: 14.09.2016).
  6. Лукацкий А.В. Обнаружение атак. – СПб. : Издательство «БВХ», 2001. – 624 с.
  7. Руководство пользователя программного комплекса «Средство анализа защищенности «Сканер-ВС». НПЭШ.00606-01. ЗАО «НПО «Эшелон», 2011.
  8. Сканер безопасности XSPider. Руководство администратора / – [Электронный ресурс]. – Режим доступа: http://www.ptsecurity.ru (Дата обращения: 15.09.2016).
  9. Сканер безопасности MaxPatrol. Система контроля защищенности / – [Электронный ресурс]. – Режим доступа: http://www.ptsecurity.ru (Дата обращения: 16.09.2016).
  10. Стивен Норткат, Джуди Новак. Обнаружение нарушений безопасности в сетях. 3-е изд.: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – С. 265–280.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий