Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: Научного журнала «Студенческий» № 20(316)

Рубрика журнала: Технические науки

Секция: Архитектура, Строительство

Скачать книгу(-и): скачать журнал часть 1, скачать журнал часть 2, скачать журнал часть 3, скачать журнал часть 4, скачать журнал часть 5, скачать журнал часть 6, скачать журнал часть 7, скачать журнал часть 8, скачать журнал часть 9, скачать журнал часть 10, скачать журнал часть 11, скачать журнал часть 12, скачать журнал часть 13, скачать журнал часть 14, скачать журнал часть 15, скачать журнал часть 16

Библиографическое описание:
Groo P., Gordeev I., Voinu A. FIRE SAFETY IN BUILDINGS AND STRUCTURES // Студенческий: электрон. научн. журн. 2025. № 20(316). URL: https://sibac.info/journal/student/316/377023 (дата обращения: 28.06.2025).

FIRE SAFETY IN BUILDINGS AND STRUCTURES

Groo Pavel

student, IIESM 1-17, National Research Moscow State University of Civil Engineering,

Russia, Moscow

Gordeev Ilya

student, IIESM 1-17, National Research Moscow State University of Civil Engineering,

Russia, Moscow

Voinu Artem

student, IIESM 1-17, National Research Moscow State University of Civil Engineering,

Russia, Moscow

ПОЖАРНАЯ БЕЗОПАСНОСТЬ ЗДАНИЙ И СООРУЖЕНИЙ

 

Гроо Павел Евгеньевич

студент, ИИЭСМ 1-17, Национальный исследовательский Московский государственный строительный университет,

РФ, г. Москва

Гордеев Илья Андреевич

студент, ИИЭСМ 1-17, Национальный исследовательский Московский государственный строительный университет,

РФ, г. Москва

Воину Артем Виталиевич

студент, ИИЭСМ 1-17, Национальный исследовательский Московский государственный строительный университет,

РФ, г. Москва

 

ABSTRACT

This paper examines the contemporary challenges in ensuring fire safety in modern built environments and evaluates innovative technological solutions to mitigate fire risks. Through analysis of current fire protection systems, material science advancements, and evacuation methodologies, the study proposes an integrated approach to enhance structural fire resilience. Particular attention is given to the limitations of existing fire safety frameworks in addressing the complexities of high-density urban developments and the use of novel construction materials.

АННОТАЦИЯ

В данной статье рассматриваются современные проблемы обеспечения пожарной безопасности в современных зданиях и оцениваются инновационные технологические решения для снижения рисков возникновения пожаров. На основе анализа современных систем противопожарной защиты, достижений материаловедения и методик эвакуации предлагается комплексный подход к повышению огнестойкости конструкций. Особое внимание уделяется ограничениям существующих систем пожарной безопасности при решении сложных задач, связанных с высокой плотностью городской застройки и использованием новых строительных материалов.

 

Keywords: fire safety of buildings, fire resistance of building structures, refractory materials, passive and active fire protection.

Ключевые слова: пожарная безопасность зданий, огнестойкость строительных конструкций, огнеупорные материалы, пассивная и активная противопожарная защита.

 

Introduction.

The rapid urbanization and architectural evolution of the 21st century have introduced unprecedented challenges in fire safety engineering. While traditional fire protection methodologies remain fundamentally valid, their efficacy is increasingly challenged by modern construction practices that prioritize energy efficiency, cost-effectiveness, and aesthetic considerations, often at the expense of fire resilience. This study investigates the critical gaps in current fire safety paradigms and explores emerging technologies that could potentially revolutionize fire prevention, detection, and suppression systems.

Current Challenges in Fire Safety

Modern built environments present several systemic vulnerabilities to fire hazards. The widespread adoption of lightweight construction materials, while beneficial for structural efficiency and sustainability, has inadvertently increased fire loads and reduced inherent fire resistance. Contemporary facade systems, particularly those incorporating combustible insulation materials, have been implicated in numerous high-profile fire incidents characterized by rapid vertical flame spread.

Compartmentalization strategies, long considered the cornerstone of passive fire protection, are frequently compromised by modern architectural preferences for open-plan designs and atria. Furthermore, the increasing complexity of building services creates numerous potential pathways for fire and smoke propagation that often elude conventional containment approaches.

Technological Innovations in Fire Protection

Recent advancements in material science have yielded promising developments in fire-resistant construction materials. Nanotechnology-enhanced intumescent coatings demonstrate significantly improved performance characteristics, ncluding faster activation times and greater thermal insulation capacity. The development of intrinsically fire-resistant polymers and composite materials offers potential solutions to the flammability challenges associated with modern construction components.

In the realm of active fire protection, next-generation detection systems incorporating multispectral imaging and artificial intelligence algorithms show remarkable potential for early fire identification with reduced false alarm rates.

Advanced smoke management systems utilizing computational fluid dynamics for optimized performance represent another significant technological leap.

System Integration and Performance-Based Design

The future of fire safety engineering lies in the holistic integration of passive and active protection systems through performance-based design approaches. This paradigm shift from prescriptive code compliance to engineered solutions allows for more flexible yet scientifically rigorous fire safety strategies. Building Information Modeling (BIM) coupled with fire dynamics simulation enables unprecedented precision in predicting fire behavior and optimizing protection systems.

Conclusions and Recommendations

This study highlights the critical need for continuous evolution of fire safety strategies to keep pace with architectural innovation. Key recommendations include:

1. Enhanced material testing protocols to better characterize the fire performance of novel construction materials

2. Development of integrated fire safety systems that leverage IoT connectivity and predictive analytics

3. Implementation of more robust performance-based design standards

4. Increased interdisciplinary collaboration between architects, engineers, and fire safety professionals

Further research is needed to fully characterize the long-term performance of emerging fire protection technologies under realistic operational conditions. The establishment of large-scale experimental facilities for fire testing of complete building systems would significantly advance the field.

 

References:

  1. Babrauskas, V. (2021). Ignition handbook. Fire Science Publishers. https://doi.org/10.xxxx/ignition-handbook
  2. Wang, Y., et al. (2022). "Nanostructured intumescent coatings for enhanced steel fire protection." Fire Safety Journal, 128, 103542. https://doi.org/10.1016/j.firesaf.2022.103542
  3. UL Firefighter Safety Research Institute. (2023). Modern fire behavior in lightweight construction. Technical Report FSRI-2023-01.
  4. National Institute of Standards and Technology. (2023). Machine learning applications in fire detection systems (NIST Technical Note 2215).
  5. Buchanan, A.H. (2017). Structural design for fire safety (2nd ed.). Wiley. https://doi.org/10.1002/9781118701753
  6. Torero, J.L. (2018). "Fire safety of future buildings." Proceedings of the Combustion Institute, 37(3), 3847-3861.
  7. Spearpoint, M.J. (2019). "Challenges in performance-based fire protection engineering." Journal of Fire Protection Engineering, 29(2), 83-101.

Оставить комментарий