

Кадыров А.С., Ганюков А.А.

НАГРУЖЕНИЕ ФРЕЗЕРНЫХ И БУРИЛЬНЫХ МАШИН ПРИМЕНИТЕЛЬНО К СТРОИТЕЛЬСТВУ СПОСОБОМ «СТЕНА В ГРУНТЕ»

Монография

УДК 624.137 ББК 38.78 К13

Рецензенты:

Сахапов Р.Л., д-р техн. наук, профессор, заведующий кафедрой строительнодорожных машин Казанского государственного архитектурно-строительного университета, РФ, г. Казань;

Шеров К.Т., д-р техн. наук, профессор, Казахский агротехнический университет им. С. Сейфуллина, Казахстан, г. Нур-Султан.

Кадыров А.С., Ганюков А.А.

К13 «Нагружение фрезерных и бурильных машин применительно к строительству способом «стена в грунте»: монография; Новосибирск: Изд. ООО «СибАК», 2022. – 178 с.

ISBN 978-5-6047255-8-0

В монографии изложен системный подход к вопросу проектирования фрезерных и бурильных машин, работающих преимущественно в глинистом растворе. Установлены силы сопротивления разрушению грунта и движению инструмента в глинистом растворе. Приведен морфологический анализ рабочих органов машин. Экспериментальным путем подтверждены теоретические зависимости, определяющие значения сил и моментов от сил сопротивления, действующих со стороны глинистого раствора на рабочий орган землеройной машины.

ББК 38.78

ISBN 978-5-6047255-8-0

© Кадыров А.С., Ганюков А.А., 2022 г. © ООО «СибАК», 2022 г.

СОДЕРЖАНИЕ:

Введ	Введение	
1. Аналитический обзор		
	1.1. Строительство подземных сооружений способом «стена в грунте»	
	1.2. Машины и механизмы, применяемые для строительства способом «стена в грунте»	
	1.3. Анализ результатов исследований разрушения грунта рабочими органами землеройных машин	
	1.4. Физические и механические свойства глинистых растворов	
	1.5. Оборудование для приготовления, очистки глинистого раствора и бетонирования траншей	
	1.6. Методы анализа системы «рабочий орган землеройной машины – технологический процесс»	
	агружение рабочих органов землеройных машин инистом растворе	
	2.1. Нагружение плоского элемента конструкции	
	2.2. Нагружение криволинейного элемента конструкции	
	2.3. Нагружение реального рабочего органа	
	2.4. Динамика движения рабочего органа землеройной машины в глинистом растворе	
	кспериментальное исследование движения фрезерных очих органов в глинистом растворе	
	3.1 Планирование эксперимента	

3.2. Описание экспериментальной установки	89	
3.3. Обработка экспериментальных данных	95	
3.4. Анализ полученных результатов	99	
4. Определение сил сопротивления разрушению грунта рабочими органами вращательного действия		
4.1. Особенности разрушения грунта вращательными рабочими органами	107	
4.2. Теоретический анализ закономерностей изменения силы резания при фрезеровании грунта	108	
4.3. Определение сил сопротивления фрезерованию	119	
4.4. Теоретический анализ закономерностей изменения силы резания при бурении грунта	137	
4.5. Определение величины и характера нагружения бурильного рабочего органа при разрушении грунта	142	
4.6. Сопротивление мерзлых и прочных грунтов разрушению вращательными рабочими органами	146	
4.7. Нагружение рабочего органа вращательного действия, активизированного струей жидкости высокого давления	149	
4.8. Нагружение рабочего органа при транспортировании разбуренного грунта	153	
Заключение		
Список литературы		

ВВЕДЕНИЕ

Современные условия застройки обуславливают необходимость модернизации и реконструкции действующих производств. Нулевой цикл работ при этом придется производить в стесненных условиях городской или промышленной застройки, при высоком уровне грунтовых вод, без остановки действующего производства, с обеспечением необходимой экологической защиты грунтовых массивов и водоемов. В набольшей степени этим условиям отвечает способ строительства подземных сооружений «стена в грунте». Сущность его заключается в проходке узких и глубоких траншей под слоем глинистого раствора с последующим заполнением их монолитным бетоном, глиноцементными смесями или сборными железобетонными элементами. Возможно строительство «стены в грунте» с использованием буронабивных свай. Глинистый раствор служит для удержания стенок траншеи от обрушения.

За рубежом первые противофильтрационные завесы способом «стена в грунте» были построены в США в 1905-1912 годах на реке Тенеси и в 1950 году в Калифорнии (автор разработки – А. Дорес). В 1952 году была наполнена первая буровая «стена в грунте» (французская фирма Soletanche). Траншейная «стена в грунте» впервые была устроена при строительстве метрополитена в г. Милане (1957–1961). Этот способ первоначально назывался «Jmpresa di Constrizioni Opere Specializzate, Veder», сокращенно I.C.O.S. – Veder. Австрийский инженер Р. Федер применил в разработанном им способе идею удержания стенок траншеи от обрушения глинистым раствором. В дальнейшем способ «стена в грунте» нашел широкое применение в Японии, Италии, Франции, США. В Советском Союзе инициаторами развития способа «стена в грунте» являются следующие проектные, учебные и строительное организации: ВНИИГС, ГПИ «Фундаментпроект», НИИОСП, НИИСП, БелПТИ, НПО «Союзспецфундаменттяжстрой», тресты «Гидроспецфундаментстрой», «Промбурвод», Минмонтажспецстроя СССР и Гидроспецстрой.

Первая противофильтрационная завеса в СССР была построена в 1949 году при строительстве Чурубай-Нуринской ТЭЦ в г. Караганде.

Способ «стена в грунте» позволяет: экономить материалы, используемые в строительстве, исключить меры по водоотливу и понижению уровня грунтовых вод, более эффективно использовать подземное пространство городов и предприятий, строить подземные сооружения любой конфигурации в плане и вблизи существующих зданий, осуществлять экологическую защиту окружающей среды.

Несмотря на указанные достоинства, «стена в грунте» в сравнении с другими видами фундаментов в нашей стране внедряется незначительно,

невысок темп нарастания объемов работ, необоснованно ограничена область ее применения, меньше возможной технико-экономической эффективности строительства. На сегодняшний день можно констатировать отставание отечественного производства в области строительства способом «стена в грунте» от мирового уровня. Объясняется это недостаточной проработанностью технологического процесса, нехваткой специального землеройного оборудования.

Нарастание объемов строительства при одновременном уменьшении затрачиваемых ресурсов, то есть интенсификация строительства способом «стена в грунте», возможно за счет повышения эффективности как технологического процесса, так и отдельных его операций. Ведущим звеном в технологическом процессе являются землеройные машины. На разработку траншей (или бурение скважин) приходится от 30 до 50% общих трудозатрат и 10–35% стоимости работ. Наибольший объем земляных работ в настоящее время выполняется цикличными машинами механического действия. Несколько реже, из-за необходимости разработки траншеи большой глубины (не менее 10 м), применяются цепные рабочие органы (РО).

Несмотря на надежность работы и простоту конструкции, эти машины приближаются к пределу своих показателей назначения.

Как показывает практика строительного производства, дальнейшей интенсификации строительства способом «стена в грунте» будет способствовать применение фрезерных и бурильных машин механического и гидромеханических принципов действия. Однако их внедрение сдерживается отсутствием соответствующей научной базы, позволявшей производить расчет и конструирование перспективных машин, эта трудность существует как при предпроектном проектировании, так и при расчете конкретных машин на этапе рабочего проектирования. Использование имеющихся научно-технических результатов ограничено особенностями работы фрезерных и бурильных машин при разработке траншей или скважины: наличие в траншее (скважине) глинистого тиксотропного раствора, значительное различие между глубиной (до 50 м) и шириной траншеи, влияние на сопротивление разрушения грунта глубины забоя и радиуса кривизны траектории движения резцов вращательного РО. Эти особенности определяют необходимость установления нагружения вращательного РО при его перемещении в глинистом растворе, учета влияния давления раствора на забой и его фильтрацию в грунт на величину силы резания грунта, определения характера изменения сил резания в зависимости от радиуса РО, разработки методики расчета оптимального режима работы и конструкции фрезерных и бурильных машин.

Таким образом, создание и внедрение высокоэффективных фрезерных и бурильных машин и интенсификация с их помощью строительства объектов способом «стена в грунте» сдерживаются отсутствием научных данных в области теории и расчета этого оборудования. Требует решения актуальная ПРОБЛЕМА — разработка теории фрезерных и бурильных машин, применяемых в фундаментостроении.

Монография содержит сведения о результатах исследовании по указанной проблеме и рассчитана на инженерно-технических работников проектных и научных организаций, аспирантов и студентов, обучающихся по специальности 05.05.04 «Дорожные и строительные машин».

Кадыров Адиль Суратович Ганюков Александр Анатольевич

Монография

НАГРУЖЕНИЕ ФРЕЗЕРНЫХ И БУРИЛЬНЫХ МАШИН ПРИМЕНИТЕЛЬНО К СТРОИТЕЛЬСТВУ СПОСОБОМ «СТЕНА В ГРУНТЕ»

Подписано в печать 13.04.22. Формат бумаги 60x84/16. Бумага офсет №1. Гарнитура Times. Печать цифровая. Усл. печ. л. 11,125. Тираж 550 экз.

Издательство ООО «СибАК» 630049, г. Новосибирск, Красный проспект, 165, оф. 4. E-mail: mail@sibac.info

Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3.